在数据结构中图算是个较为难理解的结构形式了。
大致我们可以分为两个大类:
1、通过数组实现
2、通过链表实现
而链表的实现方式还可以继续细分:邻接表、邻接多重表、十字链表
所以关于图的结构的存储这里我们介绍四种基本形式:
1、邻接矩阵(数组)
2、邻接表(链表)
3、邻接多重表(链表)
4、十字链表(链表)
在C++中,图的存储方式通常有两种:邻接矩阵和邻接表。
邻接矩阵:
#include
#include
using namespace std;
const int MAX_VERTICES = 100;
class Graph {
private:
int vertices;
vector<vector<int>> adjacencyMatrix;
public:
Graph(int V) : vertices(V), adjacencyMatrix(V, vector<int>(V, 0)) {}
void addEdge(int start, int end) {
adjacencyMatrix[start][end] = 1;
adjacencyMatrix[end][start] = 1;
}
void printGraph() {
for (int i = 0; i < vertices; ++i) {
for (int j = 0; j < vertices; ++j) {
cout << adjacencyMatrix[i][j] << " ";
}
cout << endl;
}
}
};
int main() {
Graph g(5);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 3);
g.addEdge(3, 4);
g.printGraph();
return 0;
}
邻接表:
#include
#include
using namespace std;
class Graph {
private:
int vertices;
list<int> *adjacencyList;
public:
Graph(int V) : vertices(V), adjacencyList(new list<int>[V]) {}
void addEdge(int start, int end) {
adjacencyList[start].push_back(end);
}
void printGraph() {
for (int i = 0; i < vertices; ++i) {
cout << i << ": ";
for (const auto &neighbor : adjacencyList[i]) {
cout << neighbor << " ";
}
cout << endl;
}
}
};
int main() {
Graph g(5);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 3);
g.addEdge(3, 4);
g.printGraph();
return 0;
}
在这里,顶点从0到V-1编号。你可以根据需要选择合适的表示方式,邻接矩阵适合稠密图,而邻接表适合稀疏图。
当涉及到图的存储时,除了邻接矩阵和邻接表之外,还有其他一些高级的表示方式,如邻接多重表和十字链表。
3.邻接多重表:
邻接多重表主要用于存储无向图,其中每条边都有一个表结点。每个表结点包含两个指针,分别指向该边的两个顶点,并包含一些边的信息。这种表示方法在处理无向图时更为直观。下面是一个简化的例子:
class Graph {
private:
struct EdgeNode {
int vertex1, vertex2;
EdgeNode* next1;
EdgeNode* next2;
EdgeNode(int v1, int v2) : vertex1(v1), vertex2(v2), next1(nullptr), next2(nullptr) {}
};
vector<EdgeNode*> edgeList;
public:
Graph(int V) : edgeList(V, nullptr) {}
void addEdge(int start, int end) {
EdgeNode* edge = new EdgeNode(start, end);
// Update pointers
edge->next1 = edgeList[start];
edgeList[start] = edge;
edge->next2 = edgeList[end];
edgeList[end] = edge;
}
void printGraph() {
for (int i = 0; i < edgeList.size(); ++i) {
cout<< i << ": ";
EdgeNode* edge = edgeList[i];
while (edge != nullptr) {
cout << "(" << edge->vertex1 << "," << edge->vertex2 << ") ";
edge = edge->next1;
}
cout << endl;
}
}
};
4.** 十字链表**:
十字链表适用于有向图,它在邻接表的基础上进一步改进,以有效地表示有向边。每个结点包含两个指针,分别指向入边和出边,以及一些边的信息。下面是一个简化的例子:
class Graph {
private:
struct Node {
int vertex;
Node* next;
Node(int v) : vertex(v), next(nullptr) {}
};
struct ArcNode {
int endVertex;
ArcNode* nextIn;
ArcNode* nextOut;
ArcNode(int end) : endVertex(end), nextIn(nullptr), nextOut(nullptr) {}
};
vector<Node*> nodeList;
public:
Graph(int V) : nodeList(V, nullptr) {}
void addEdge(int start, int end) {
ArcNode* arc = new ArcNode(end);
arc->nextOut = nodeList[start];
nodeList[start] = arc;
Node* node = new Node(start);
node->next = nodeList[end];
nodeList[end] = node;
}
void printGraph() {
for (int i = 0; i < nodeList.size(); ++i) {
cout << i << ": ";
ArcNode* arcOut = nodeList[i];
while (arcOut != nullptr) {
cout << arcOut->endVertex << " ";
arcOut = arcOut->nextOut;
}
cout << endl;
cout << i << ": ";
Node* nodeIn = nodeList[i];
while (nodeIn != nullptr) {
cout << nodeIn->vertex << " ";
nodeIn = nodeIn->next;
}
cout << endl;
}
}
};
下面是一些练习题:
1.无向图的连通分量
【问题描述】求解无向图的连通分量。
【输入形式】第一行:顶点数 边数;第二行:顶点;第三行及后面:边(每一行一条边)
【输出形式】分量:顶点集合(顶点按从小到大排序输出)(每个连通分量输出占用一行)
【样例输入】
6 5
ABCDEF
A B
A E
B E
A F
B F
【样例输出】
1:ABEF
2:C
3:D
#include
#include
#include
#include
#include
using namespace std;
class Graph {
private:
map<char, vector<char> > adjacencyList;
map<char, bool> visited;
public:
void addEdge(char u, char v) {
adjacencyList[u].push_back(v);
adjacencyList[v].push_back(u);
}
void DFS(char vertex, set<char>& component) {
visited[vertex] = true;
component.insert(vertex);
for (vector<char>::iterator it = adjacencyList[vertex].begin(); it != adjacencyList[vertex].end(); ++it) {
char neighbor = *it;
if (!visited[neighbor]) {
DFS(neighbor, component);
}
}
}
vector<set<char> > getConnectedComponents() {
vector<set<char> > components;
visited.clear();
for (map<char, vector<char> >::const_iterator it = adjacencyList.begin(); it != adjacencyList.end(); ++it) {
char vertex = it->first;
if (!visited[vertex]) {
set<char> component;
DFS(vertex, component);
components.push_back(component);
}
}
return components;
}
};
int main() {
int vertices, edges;
cin >> vertices >> edges;
Graph graph;
string verticesStr;
cin >> verticesStr;
for (string::iterator it = verticesStr.begin(); it != verticesStr.end(); ++it) {
char vertex = *it;
graph.addEdge(vertex, vertex);
}
for (int i = 0; i < edges; ++i) {
char u, v;
cin >> u >> v;
graph.addEdge(u, v);
}
vector<set<char> > components = graph.getConnectedComponents();
for (int i = 0; i < components.size(); ++i) {
set<char> component = components[i];
cout << i + 1 << ":";
for (set<char>::iterator it = component.begin(); it != component.end(); ++it) {
cout << *it;
}
cout << endl;
}
return 0;
}
【问题描述】已知一个无向图,求解该无向图中顶点的度。输入:无向图的顶点数及边数,各顶点及边,某顶点;输出:该顶点的度。
【输入形式】第一行:顶点数、边数,第二行:顶点;第三行开始:边(一条边占用一行),最后一行:顶点(求该顶点的度)
6 8
ABCDEF
A B
A C
A D
B C
B D
C D
C E
E F
A
【输出形式】3
#include
#include
#include
using namespace std;
// 计算指定顶点的度数
int calculateDegree(int vertex, const vector<vector<bool> > &adjacencyMatrix)
{
int degree = 0;
for (size_t i = 0; i < adjacencyMatrix[vertex].size(); ++i)
{
if (adjacencyMatrix[vertex][i])
{
degree++;
}
}
return degree;
}
int main()
{
int vertices, edges;
cin >> vertices >> edges;
// 构建顶点映射表
map<char, int> vertexMap;
vector<char> vertexList(vertices);
for (int i = 0; i < vertices; ++i)
{
cin >> vertexList[i];
vertexMap[vertexList[i]] = i;
}
// 构建邻接矩阵
vector<vector<bool> > adjacencyMatrix(vertices, vector<bool>(vertices, false));
for (int i = 0; i < edges; ++i)
{
char start, end;
cin >> start >> end;
adjacencyMatrix[vertexMap[start]][vertexMap[end]] = true;
adjacencyMatrix[vertexMap[end]][vertexMap[start]] = true;
}
// 输入要查询的顶点
char queryVertex;
cin >> queryVertex;
// 计算顶点度数并输出
int degree = calculateDegree(vertexMap[queryVertex], adjacencyMatrix);
cout << degree << endl;
return 0;
}
【问题描述】已知无向图的邻接矩阵存储结构,构造该图的邻接表存储结构。其中函数createMGraph用于创建无向图的邻接矩阵存储结构;函数createALGraph(ALGraph &G,MGraph G1)根据无向图的邻接矩阵存储结构G1,构建图的链接表存储结构G;函数printAdjustVex实现遍历邻接表,打印各顶点及邻接点。请根据上下文,将程序补充完整。
【输入形式】第一行:顶点数n和边数e;第一行:顶点序列;接着的e行:边依附的两个顶点在顶点数组中的索引
【输出形式】n行。每一行内容为:顶点:邻接点序列
【样例输入】
6 5
ABCDEF
0 1
0 4
1 4
0 5
1 5
【样例输出】
A:BEF
B:AEF
C:
D:
E:AB
F:AB
#include
using namespace std;
#define MaxVexNum 20 //最大顶点数设为20
struct MGraph
{
char vexs[MaxVexNum]; //顶点表
int arcs[MaxVexNum][MaxVexNum]; //邻接矩阵
int vexnum,arcnum; //图中顶点数和边数
}; //MGragh是以邻接矩阵存储的图类型
struct ArcNode
{
int adjvex; //邻接点域
struct ArcNode * nextarc; //指向下一个邻接点的指针域
} ; //可增加一个数据域info表示边或弧的信息
struct VNode
{
char data; //顶点信息
ArcNode * firstarc; //边表头指针
};
struct ALGraph
{
VNode vertices[MaxVexNum];
int vexnum,arcnum; //顶点数和边数
} ;
void createMGraph(MGraph &G)
{
int u,v;
cin>>G.vexnum>>G.arcnum;
for(int i=0; i<G.vexnum; i++)
cin>>G.vexs[i];
for(int i=0; i<G.vexnum; i++)
for(int j=0; j<G.vexnum; j++)
G.arcs[i][j]=0;
for(int i=1; i<=G.arcnum; i++)
{
cin>>u>>v;
G.arcs[u][v]=1;
G.arcs[v][u]=1;
}
}
void createALGraph(ALGraph &G, MGraph G1)
{
G.vexnum = G1.vexnum;
G.arcnum = G1.arcnum;
for (int i = 0; i < G1.vexnum; i++)
{
G.vertices[i].data = G1.vexs[i];
G.vertices[i].firstarc = NULL;
}
for (int i = G1.vexnum - 1; i >= 0; i--)
{
for (int j = G1.vexnum - 1; j >= 0; j--)
{
if (G1.arcs[i][j] == 1)
{
ArcNode *newArc = new ArcNode;
newArc->adjvex = j;
newArc->nextarc = G.vertices[i].firstarc;
G.vertices[i].firstarc = newArc;
}
}
}
}
void printAdjustVex(ALGraph G)
{
for(int i=0;i<G.vexnum;i++)
{
cout<<G.vertices[i].data<<":";
ArcNode *p=G.vertices[i].firstarc;
while(p)
{
cout<<G.vertices[p->adjvex].data;
p=p->nextarc;
}
cout<<endl;
}
}
int main()
{
MGraph G;
ALGraph G1;
createMGraph(G);
createALGraph(G1,G);
printAdjustVex(G1);
}