日撸java_day66-68

文章目录

  • 主动学习ALEC
    • 代码
    • 运行结果

主动学习ALEC

代码

package machineLearning.activelearning;

import weka.core.Instances;

import java.io.FileReader;
import java.io.IOException;
import java.util.Arrays;

/**
 * ClassName: Alec
 * Package: machineLearning.activelearning
 * Description: Active learning through density clustering.
 *
 * @Author: luv_x_c
 * @Create: 2023/8/21 14:26
 */
public class Alec {
    /**
     * The whole dataset.
     */
    Instances dataset;

    /**
     * The maximal number of queries that can be provided.
     */
    int maxNumQuery;


    /**
     * The actual number of queries.
     */
    int numQuery;

    /**
     * The radius, also dc in the paper. It is employed for density computation.
     */
    double radius;

    /**
     * The densities of instances.
     */
    double[] densities;

    /**
     * DistanceToMaster
     */
    double[] distanceToMaster;

    /**
     * Sorted indices, where the first element indicates the instance with the biggest density,
     */
    int[] descendantDensities;

    /**
     * Priority.
     */
    double[] priority;

    /**
     * The maximal distance between any pair of points.
     */
    double maximalDistance;

    /**
     * Who is my master?
     */
    int[] masters;

    /**
     * Predicted labels.
     */
    int[] predictedLabels;

    /**
     * Instance status. 0 for unprocessed, 1 for queried, 2 for classified.
     */
    int[] instanceStatusArray;

    /**
     * The descendant indices to show the representatives of instances in a descendant order.
     */
    int[] descendantRepresentatives;

    /**
     * Indicate the cluster of each instance. It is only used in clusterInTwo(int[]).
     */
    int[] clusterIndices;

    /**
     * Blocks with size more than this threshold should not be split further.
     */
    int smallBlockThreshold = 3;

    /**
     * The constructor.
     *
     * @param paraFileName The data filename.
     */
    public Alec(String paraFileName) {
        try {
            FileReader fileReader = new FileReader(paraFileName);
            dataset = new Instances(fileReader);
            dataset.setClassIndex(dataset.numAttributes() - 1);
            fileReader.close();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }//Of try

        computeMaximalDistance();
        clusterIndices = new int[dataset.numInstances()];
    }//OF the constructor

    /**
     * Merge sort in descendant order to obtain an index array. The original array  is unchanged.
     * The method should be tested further.
     *
     * @param paraArray The original array.
     * @return The sorted indices.
     */
    public static int[] mergeSortToIndices(double[] paraArray) {
        int tempLength = paraArray.length;
        int[][] resultMatrix = new int[2][tempLength];

        // Initialize
        int tempIndex = 0;
        for (int i = 0; i < tempLength; i++) {
            resultMatrix[tempIndex][i] = i;
        }//Of for i

        // Merge
        int tempCurrentLength = 1;
        // The indices for current merged groups.
        int tempFirstStart, tempSecondStart, tempSecondEnd;

        while (tempCurrentLength < tempLength) {
            // Divide into a number of groups.
            // Here the boundary is adaptive to array length not equal to 2^k
            for (int i = 0; i < Math.ceil((tempLength + 0.0) / tempCurrentLength / 2); i++) {
                // Boundaries of the group
                tempFirstStart = i * tempCurrentLength * 2;

                tempSecondStart = tempFirstStart + tempCurrentLength;

                tempSecondEnd = tempSecondStart + tempCurrentLength - 1;
                if (tempSecondEnd >= tempLength) {
                    tempSecondEnd = tempLength - 1;
                }//Of if

                // Merge this group
                int tempFirstIndex = tempFirstStart;
                int tempSecondIndex = tempSecondStart;
                int tempCurrentIndex = tempFirstStart;

                if (tempSecondStart >= tempLength) {
                    for (int j = tempFirstIndex; j < tempLength; j++) {
                        resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] =
                                resultMatrix[tempIndex % 2][j];
                        tempFirstIndex++;
                        tempCurrentIndex++;
                    }//OF for j
                    break;
                }//OF if

                while ((tempFirstIndex <= tempSecondStart - 1) && (tempSecondIndex <= tempSecondEnd)) {
                    if (paraArray[resultMatrix[tempIndex % 2][tempFirstIndex]] >= paraArray[resultMatrix[tempIndex % 2][tempSecondIndex]]) {
                        resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] =
                                resultMatrix[tempIndex % 2][tempFirstIndex];
                        tempFirstIndex++;
                    } else {
                        resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] =
                                resultMatrix[tempIndex % 2][tempSecondIndex];
                        tempSecondIndex++;
                    }//Of if
                    tempCurrentIndex++;
                }//Of while

                // Remaining part
                for (int j = tempFirstIndex; j < tempSecondStart; j++) {
                    resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] =
                            resultMatrix[tempIndex % 2][j];
                    tempCurrentIndex++;
                }//Of for j
                for (int j = tempSecondIndex; j <= tempSecondEnd; j++) {
                    resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] =
                            resultMatrix[tempIndex % 2][j];
                    tempCurrentIndex++;
                }//Of for j
            }//Of for i

            tempCurrentLength *= 2;
            tempIndex++;
        }//Of while

        return resultMatrix[tempIndex % 2];
    }//Of mergeSortToIndices

    /**
     * The Euclidean distance between two instances.
     *
     * @param paraI The index of the first instance.
     * @param paraJ The index of the second instance.
     * @return The distance.
     */
    public double distance(int paraI, int paraJ) {
        double resultDistance = 0;
        double tempDifference;
        for (int i = 0; i < dataset.numAttributes() - 1; i++) {
            tempDifference = dataset.instance(paraI).value(i) - dataset.instance(paraJ).value(i);
            resultDistance += tempDifference * tempDifference;
        }//Of for i
        resultDistance = Math.sqrt(resultDistance);

        return resultDistance;
    }//Of distance

    /**
     * Compute the maximal distance. The result is stored in a member variable.
     */
    public void computeMaximalDistance() {
        maximalDistance = 0;
        double tempDistance;
        for (int i = 0; i < dataset.numInstances(); i++) {
            for (int j = 0; j < dataset.numInstances(); j++) {
                tempDistance = distance(i, j);
                if (maximalDistance < tempDistance) {
                    maximalDistance = tempDistance;
                }//Of if
            }//Of for j
        }//Of for i

        System.out.println("maximalDistance = " + maximalDistance);
    }//Of computeMaximalDistance

    /**
     * Compute the densities using Gaussian kernel.
     */
    public void computeDensitiesGaussian() {
        System.out.println("Radius = " + radius);
        densities = new double[dataset.numInstances()];
        double tempDistance;

        for (int i = 0; i < dataset.numInstances(); i++) {
            for (int j = 0; j < dataset.numInstances(); j++) {
                tempDistance = distance(i, j);
                densities[i] += Math.exp(-tempDistance * tempDistance / radius / radius);
            }//Of for j
        }//OF for i

        System.out.println("The densities are: " + Arrays.toString(densities) + "\r\n");
    }//Of computeDensitiesGaussian

    /**
     * \
     * Compute distanceToMaster, the distance to its master.
     */
    public void computeDistanceToMaster() {
        distanceToMaster = new double[dataset.numInstances()];
        masters = new int[dataset.numInstances()];
        descendantDensities = new int[dataset.numInstances()];
        instanceStatusArray = new int[dataset.numInstances()];

        descendantDensities = mergeSortToIndices(densities);
        distanceToMaster[descendantDensities[0]] = maximalDistance;

        double tempDistance;
        for (int i = 1; i < dataset.numInstances(); i++) {
            // Initialize
            distanceToMaster[descendantDensities[i]] = maximalDistance;
            for (int j = 0; j <= i - 1; j++) {
                tempDistance = distance(descendantDensities[i], descendantDensities[j]);
                if (distanceToMaster[descendantDensities[i]] > tempDistance) {
                    distanceToMaster[descendantDensities[i]] = tempDistance;
                    masters[descendantDensities[i]] = descendantDensities[j];
                }//Of if
            }//Of  for j
        }//Of for i
        System.out.println("First compute, masters = " + Arrays.toString(masters));
        System.out.println("descendantDensities = " + Arrays.toString(descendantDensities));
    }//Of computeDistanceToMaster

    /**
     * Compute priority. Element with higher priority is more likely to be
     * selected as a cluster center. Now it is rho * distanceToMaster. It can
     * also be rho^alpha * distanceToMaster.
     */
    public void computePriority() {
        priority = new double[dataset.numInstances()];
        for (int i = 0; i < dataset.numInstances(); i++) {
            priority[i] = densities[i] * distanceToMaster[i];
        }//Of for i
    }//Of computePriority

    /**
     * The block of a node should be same as its master. This recursive method is efficient.
     *
     * @param paraIndex The index of the given node.
     * @return The cluster index of the current node.
     */
    public int coincideWithMaster(int paraIndex) {
        if (clusterIndices[paraIndex] == -1) {
            int tempMaster = masters[paraIndex];
            clusterIndices[paraIndex] = coincideWithMaster(tempMaster);
        }//Of if

        return clusterIndices[paraIndex];
    }//Of coincideWithMaster

    /**
     * Cluster a block in two. According to the master tree.
     *
     * @param paraBlock The given block.
     * @return The new blocks where the two most represent instances serve as
     * the root.
     */
    public int[][] clusterInTwo(int[] paraBlock) {
        //Reinitialize. In fact, only instances in the given block is considered.
        Arrays.fill(clusterIndices, -1);

        // Initialize the cluster number of the two roots.
        for (int i = 0; i < 2; i++) {
            clusterIndices[paraBlock[i]] = i;
        }//Of for i

        for (int i = 0; i < paraBlock.length; i++) {
            if (clusterIndices[paraBlock[i]] != -1) {
                // Already have a cluster number
                continue;
            }//Of if

            clusterIndices[paraBlock[i]] = coincideWithMaster(masters[paraBlock[i]]);
        }//Of for i

        // The sub blocks.
        int[][] resultBlocks = new int[2][];
        int tempFirstBlockCount = 0;
        for (int i = 0; i < clusterIndices.length; i++) {
            if (clusterIndices[i] == 0) {
                tempFirstBlockCount++;
            }//Of if
        }//Of for i
        resultBlocks[0] = new int[tempFirstBlockCount];
        resultBlocks[1] = new int[paraBlock.length - tempFirstBlockCount];

        int tempFirstIndex = 0;
        int tempSecondIndex = 0;
        for (int i = 0; i < paraBlock.length; i++) {
            if (clusterIndices[paraBlock[i]] == 0) {
                resultBlocks[0][tempFirstIndex] = paraBlock[i];
                tempFirstIndex++;
            } else {
                resultBlocks[1][tempSecondIndex] = paraBlock[i];
                tempSecondIndex++;
            } // Of if
        } // Of for i

        System.out.println("Split (" + paraBlock.length + ") instances "
                + Arrays.toString(paraBlock) + "\r\nto (" + resultBlocks[0].length + ") instances "
                + Arrays.toString(resultBlocks[0]) + "\r\nand (" + resultBlocks[1].length
                + ") instances " + Arrays.toString(resultBlocks[1]));
        return resultBlocks;
    }//Of clusterInTwo

    /**
     * Classify instances in the block by simple voting.
     *
     * @param paraBlock The given block.
     */
    public void vote(int[] paraBlock) {
        int[] tempClassCounts = new int[dataset.numClasses()];
        for (int i = 0; i < paraBlock.length; i++) {
            if (instanceStatusArray[paraBlock[i]] == 1) {
                tempClassCounts[(int) dataset.instance(paraBlock[i]).classValue()]++;
            }//Of if
        }//Of for i

        int tempMaxClass = -1;
        int tempMaxCount = -1;
        for (int i = 0; i < tempClassCounts.length; i++) {
            if (tempMaxCount < tempClassCounts[i]) {
                tempMaxClass = i;
                tempMaxCount = tempClassCounts[i];
            }//Of if
        }//Of for i

        // Classify unprocessed instances.
        for (int i = 0; i < paraBlock.length; i++) {
            if (instanceStatusArray[paraBlock[i]] == 0) {
                predictedLabels[paraBlock[i]] = tempMaxClass;
                instanceStatusArray[paraBlock[i]] = 2;
            }//Of if
        }//Of for i
    }// Of vote

    /**
     * Cluster based active learning.
     *
     * @param paraRatio               The ratio of the maximal distance as the dc.
     * @param paraMaxNumQuery         The maximal number of queries for the whole dataset.
     * @param paraSmallBlockThreshold The small block threshold.
     */
    public void clusterBasedActiveLearning(double paraRatio, int paraMaxNumQuery,
                                           int paraSmallBlockThreshold) {
        radius = maximalDistance * paraRatio;
        smallBlockThreshold = paraSmallBlockThreshold;

        maxNumQuery = paraMaxNumQuery;
        predictedLabels = new int[dataset.numInstances()];

        for (int i = 0; i < dataset.numInstances(); i++) {
            predictedLabels[i] = -1;
        }//Of for i

        computeDensitiesGaussian();
        computeDistanceToMaster();
        computePriority();
        descendantRepresentatives = mergeSortToIndices(priority);
        System.out.println("descendantRepresentatives = " + Arrays.toString(descendantRepresentatives));

        numQuery = 0;
        clusterBasedActiveLearning(descendantRepresentatives);
    }//Of clusterBasedActiveLearning

    /**
     * Cluster based active learning.
     *
     * @param paraBlock The given block. This block must be sorted according to the priority in
     *                  descendant order.
     */
    public void clusterBasedActiveLearning(int[] paraBlock) {
        System.out.println("clusterBasedActiveLearning for block " + Arrays.toString(paraBlock));

        // Step1. How many labels are queried for this block.
        int tempExceptedQueries = (int) Math.sqrt(paraBlock.length);
        int tempNumQuery = 0;
        for (int i = 0; i < paraBlock.length; i++) {
            if (instanceStatusArray[paraBlock[i]] == 1) {
                tempNumQuery++;
            }//Of if
        }//Of for i

        // Step2. Vote for small blocks.
        if ((tempNumQuery >= tempExceptedQueries) && (paraBlock.length <= smallBlockThreshold)) {
            System.out.println("" + tempNumQuery + " instances are queried, vote for block: \r\n" + Arrays.toString(paraBlock));
            vote(paraBlock);

            return;
        }//Of if

        // Step3. Query enough labels.
        for (int i = 0; i < tempExceptedQueries; i++) {
            if (numQuery >= maxNumQuery) {
                System.out.println("No more queries are provided, numQuery =" + numQuery + ".");
                vote(paraBlock);
                return;
            }//Of if

            if (instanceStatusArray[paraBlock[i]] == 0) {
                instanceStatusArray[paraBlock[i]] = 1;
                predictedLabels[paraBlock[i]] = (int) dataset.instance(paraBlock[i]).classValue();
                numQuery++;
            }//Of if
        }//Of for i

        // Step4. Pure?
        int tempFirstLabel = predictedLabels[paraBlock[0]];
        boolean tempPure = true;
        for (int i = 1; i < tempExceptedQueries; i++) {
            if (predictedLabels[paraBlock[i]] != tempFirstLabel) {
                tempPure = false;
                break;
            }//Of if
        }// Of for i

        if (tempPure) {
            System.out.println("Classify for pure block: " + Arrays.toString(paraBlock));
            for (int i = tempExceptedQueries; i < paraBlock.length; i++) {
                if (instanceStatusArray[paraBlock[i]] == 0) {
                    predictedLabels[paraBlock[i]] = tempFirstLabel;
                    instanceStatusArray[paraBlock[i]] = 2;
                }//Of if
            }//Of for i
            return;
        }//OF if

        // Step5. Split in two and process them independently
        int[][] tempBlocks = clusterInTwo(paraBlock);
        for (int i = 0; i < 2; i++) {
            // Attention : recursive invoking here.
            clusterBasedActiveLearning(tempBlocks[i]);
        }// Of for i
    }// Of clusterBasedActiveLearning

    @Override
    public String toString() {
        int[] tempStatusCounts = new int[3];
        double tempCorrect = 0;
        for (int i = 0; i < dataset.numInstances(); i++) {
            tempStatusCounts[instanceStatusArray[i]]++;
            if (predictedLabels[i] == (int) dataset.instance(i).classValue()) {
                tempCorrect++;
            }//Of if
        }//Of for i

        String resultString =
                "(unhandled, queried, classified) =" + Arrays.toString(tempStatusCounts);
        resultString += "\r\nCorrect = " + tempCorrect + ", accuracy = " + (tempCorrect / dataset.numInstances());

        return resultString;
    }// OF toString

    /**
     * The entrance of the program.
     *
     * @param args Not used.
     */
    public static void main(String[] args) {
        long tempStart = System.currentTimeMillis();

        System.out.println("Start ALEC.");
        String arffFilename = "E:\\java_code\\data\\sampledata\\iris.arff";

        Alec tempAlec = new Alec(arffFilename);

        tempAlec.clusterBasedActiveLearning(0.15, 30, 3);

        System.out.println(tempAlec);

        long tempEnd = System.currentTimeMillis();
        System.out.println("Runtime: " + (tempEnd - tempStart) + "ms.");
    }// Of main
}// Of class Alec

运行结果

日撸java_day66-68_第1张图片

你可能感兴趣的:(java,算法)