想象一下你正坐在一辆汽车里,在雾中行驶。 你几乎看不到路,但你有一个 GPS 系统可以告诉你你的速度和位置。 问题是,这个 GPS 并不完美; 它有时会产生噪音或不准确的读数。 您如何知道您的实际位置以及行驶速度?
卡尔曼滤波器提供了答案。它结合了:
卡尔曼滤波器主要有两个步骤:
预测:
x ′ = A x + B u P ′ = A P k − 1 A T + Q \begin{aligned} x^{\prime} & =A x+B u \\ P^{\prime} & =A P_{k-1} A^T+Q \end{aligned} x′P′=Ax+Bu=APk−1AT+Q
更新:
y = z − H x S = H P ′ H T + R K = P ′ H T S − 1 x = x ′ + K y P = ( I − K H ) P ′ \begin{aligned} y & =z-H x \\ S & =H P^{\prime} H^T+R \\ K & =P^{\prime} H^T S^{-1} \\ x & =x^{\prime}+K y \\ P & =(I-K H) P^{\prime} \end{aligned} ySKxP=z−Hx=HP′HT+R=P′HTS−1=x′+Ky=(I−KH)P′
安装OpenCV和Matplotlib。
OpenCV 提供了一个方便的 KalmanFilter 类,让我们可以实现卡尔曼滤波器,而不必陷入数学细节的困境。 在本演示中,我们将模拟对象的简单 2D 运动并使用卡尔曼滤波器来估计其位置。
让我们首先初始化 2D 运动的卡尔曼滤波器。
# Initialize the Kalman filter
kalman_2d = cv2.KalmanFilter(4, 2)
kalman_2d.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
kalman_2d.transitionMatrix = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
kalman_2d.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) * 1e-4
代码释义:
我们将模拟一个沿直线移动的物体,并在其测量中添加一些噪声。当物体移动时,我们将应用卡尔曼滤波器来估计其真实位置。
让我们可视化对象的真实路径、噪声测量值以及卡尔曼滤波器估计的路径。
fig, ax = plt.subplots(figsize=(10, 6))
ax.set_xlim(0, 4 * np.pi)
ax.set_ylim(-1.5, 1.5)
ax.set_title("Kalman Filter in 2D Motion Estimation")
ax.set_xlabel("X Position")
ax.set_ylabel("Y Position")
# Plotting the true path, noisy measurements, and Kalman filter estimations
ax.plot(true_path[:, 0], true_path[:, 1], 'g-', label="True Path")
ax.scatter(np.array(measurements)[:, 0], np.array(measurements)[:, 1], c='red', s=20, label="Noisy Measurements")
ax.plot(np.array(predictions)[:, 0, 0], np.array(predictions)[:, 1, 0], 'b-', label="Kalman Filter Estimation")
ax.legend()
plt.show()
代码释义:
这是我们模拟的 2D 运动的可视化: