在 ResNet 中实现多尺度的特征融合(内含代码,用于图像分类)

在 ResNet 中实现多尺度的特征融合,类似于特征金字塔网络(Feature Pyramid Network,FPN)的思想。下面是一个简单的示例,演示如何在 ResNet 中添加多尺度的特征融合:

import torch
import torch.nn as nn

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion * planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion * planes)
            )

    def forward(self, x):
        out = nn.ReLU()(self.bn1(self.conv1(x)))
        out = nn.ReLU()(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = nn.ReLU()(out)
        return out

class ResNetWithFeaturePyramid(nn.Module):
    def __init__(self, block, num_blocks, num_classes=1000):
        super(ResNetWithFeaturePyramid, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)

        # 添加额外的卷积层用于构建特征金字塔
        self.extra_conv = nn.Conv2d(2048, 256, kernel_size=1, stride=1, bias=False)

        self.pyramid_conv1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, bias=False)
        self.pyramid_conv2 = nn.Conv2d(512, 256, kernel_size=1, stride=1, bias=False)
        self.pyramid_conv3 = nn.Conv2d(256, 256, kernel_size=1, stride=1, bias=False)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(256, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = nn.ReLU()(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)

        # 获取不同层次的特征
        c4 = out
        c3 = self.layer3(out)
        c2 = self.layer2(c3)
        c1 = self.layer1(c2)

        # 构建特征金字塔
        p4 = self.pyramid_conv1(c4)
        p3 = self.pyramid_conv2(c3)
        p2 = self.pyramid_conv3(c2)

        # 从高层到低层进行上采样和融合
        p3 = p3 + nn.functional.interpolate(p4, scale_factor=2, mode='nearest')
        p2 = p2 + nn.functional.interpolate(p3, scale_factor=2, mode='nearest')

        # 降采样
        p2 = nn.functional.interpolate(p2, scale_factor=0.5, mode='nearest')

        # 使用额外的卷积层
        p1 = self.extra_conv(c1)

        # 融合所有尺度的特征
        fused_feature = p1 + p2 + p3

        # 全局平均池化和全连接层
        out = self.avgpool(fused_feature)
        out = out.view(out.size(0), -1)
        out = self.fc(out)

        return out

def ResNet50WithFeaturePyramid():
    return ResNetWithFeaturePyramid(Bottleneck, [3, 4, 6, 3])

# 创建 ResNet-50 模型
resnet50_with_fpn = ResNet50WithFeaturePyramid()

# 打印模型结构
print(resnet50_with_fpn)

这个代码示例中,我添加了额外的卷积层和三个特征金字塔层,以便从不同的卷积层获得特征并进行融合。大家可以根据任务需求进行更改和优化。特征金字塔的思想能够提供更好的多尺度信息,有助于提高模型对不同目标大小的适应性。

你可能感兴趣的:(分类,深度学习,人工智能,pytorch,python,机器学习)