蓝桥杯专题-真题版含答案-【骑士走棋盘】【阿姆斯壮数】【Shell 排序法 - 改良的插入排序】【合并排序法】

Unity3D特效百例 案例项目实战源码 Android-Unity实战问题汇总
游戏脚本-辅助自动化 Android控件全解手册 再战Android系列
Scratch编程案例 软考全系列 Unity3D学习专栏
蓝桥系列 ChatGPT和AIGC

关于作者

专注于Android/Unity和各种游戏开发技巧,以及各种资源分享(网站、工具、素材、源码、游戏等)
有什么需要欢迎底部卡片私我,获取更多支持,交流让学习不再孤单

CSDN-芝麻粒儿

实践过程

骑士走棋盘

说明骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位置?
解法骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。

#include  

int board[8][8] = {0}; 

int main(void) {
    int startx, starty;
    int i, j;
    printf("输入起始点:");
    scanf("%d %d", &startx, &starty);

    if(travel(startx, starty)) {
        printf("游历完成!\n");
    }
    else {
        printf("游历失败!\n");
    }

    for(i = 0; i < 8; i++) {
        for(j = 0; j < 8; j++) {
            printf("%2d ", board[i][j]);
        }
        putchar('\n');
    }
    return 0;
} 

int travel(int x, int y) {
    // 对应骑士可走的八个方向
    int ktmove1[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
    int ktmove2[8] = {1, 2, 2, 1, -1, -2, -2, -1};

    // 测试下一步的出路
    int nexti[8] = {0};
    int nextj[8] = {0};
    // 记录出路的个数
    int exists[8] = {0};
    int i, j, k, m, l;
    int tmpi, tmpj;
    int count, min, tmp;

    i = x;
    j = y;
    board[i][j] = 1;

    for(m = 2; m <= 64; m++) {
        for(l = 0; l < 8; l++) 
            exists[l] = 0;

        l = 0;

        // 试探八个方向
        for(k = 0; k < 8; k++) {
            tmpi = i + ktmove1[k];
            tmpj = j + ktmove2[k];

            // 如果是边界了,不可走
            if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7)
                continue;

            // 如果这个方向可走,记录下来
            if(board[tmpi][tmpj] == 0) {
                nexti[l] = tmpi;
                nextj[l] = tmpj;
                // 可走的方向加一个
                l++;
            }
        }

        count = l;
        // 如果可走的方向为0个,返回
        if(count == 0) {
            return 0;
        }
        else if(count == 1) {
            // 只有一个可走的方向
            // 所以直接是最少出路的方向
            min = 0;
        }
        else {
            // 找出下一个位置的出路数
            for(l = 0; l < count; l++) {
                for(k = 0; k < 8; k++) {
                    tmpi = nexti[l] + ktmove1[k];
                    tmpj = nextj[l] + ktmove2[k];
                    if(tmpi < 0 || tmpj < 0 || 
                       tmpi > 7 || tmpj > 7) {
                        continue;
                    }
                    if(board[tmpi][tmpj] == 0)
                        exists[l]++;
                }
            }
            tmp = exists[0];
            min = 0;
            // 从可走的方向中寻找最少出路的方向
            for(l = 1; l < count; l++) {
                if(exists[l] < tmp) {
                    tmp = exists[l];
                    min = l;
                }
            }
        }

        // 走最少出路的方向
        i = nexti[min];
        j = nextj[min];
        board[i][j] = m;
    }

    return 1;
} 

阿姆斯壮数

说明
在三位的整数中,例如153可以满足13 + 53 + 33 = 153,这样的数称之为Armstrong数,试写出一程式找出所有的三位数Armstrong数。
解法
Armstrong数的寻找,其实就是在问如何将一个数字分解为个位数、十位数、百位数…,这只要使用除法与余数运算就可以了,例如输入 input为abc,则:
a = input / 100
b = (input%100) / 10
c = input % 10

#include  
#include  
#include  

int main(void) { 
    int a, b, c; 
    int input; 

    printf("寻找Armstrong数:\n"); 

    for(input = 100; input <= 999; input++) { 
        a = input / 100; 
        b = (input % 100) / 10; 
        c = input % 10; 
        if(a*a*a + b*b*b + c*c*c == input) 
            printf("%d ", input); 
    } 

    printf("\n"); 

    return 0; 
}

Shell 排序法 - 改良的插入排序

说明
插入排序法由未排序的后半部前端取出一个值,插入已排序前半部的适当位置,概念简单但速度不快。

排序要加快的基本原则之一,是让后一次的排序进行时,尽量利用前一次排序后的结果,以加快排序的速度,Shell排序法即是基于此一概念来改良插入排序法。
解法
Shell排序法最初是D.L Shell于1959所提出,假设要排序的元素有n个,则每次进行插入排序时并不是所有的元素同时进行时,而是取一段间隔。

Shell首先将间隔设定为n/2,然后跳跃进行插入排序,再来将间隔n/4,跳跃进行排序动作,再来间隔设定为n/8、n/16,直到间隔为1之后的最 后一次排序终止,由于上一次的排序动作都会将固定间隔内的元素排序好,所以当间隔越来越小时,某些元素位于正确位置的机率越高,因此最后几次的排序动作将 可以大幅减低。

举个例子来说,假设有一未排序的数字如右:89 12 65 97 61 81 27 2 61 98

数字的总数共有10个,所以第一次我们将间隔设定为10 / 2 = 5,此时我们对间隔为5的数字进行排序,如下所示:
在这里插入图片描述
画线连结的部份表示 要一起进行排序的部份,再来将间隔设定为5 / 2的商,也就是2,则第二次的插入排序对象如下所示:
在这里插入图片描述
再来间隔设定为2 / 2 = 1,此时就是单纯的插入排序了,由于大部份的元素都已大致排序过了,所以最后一次的插入排序几乎没作什么排序动作了:
在这里插入图片描述
将间隔设定为n / 2是D.L Shell最初所提出,在教科书中使用这个间隔比较好说明,然而Shell排序法的关键在于间隔的选定,例如Sedgewick证明选用以下的间隔可以加 快Shell排序法的速度:
在这里插入图片描述
其中4*(2j)2 + 3*(2j) + 1不可超过元素总数n值,使用上式找出j后代入4*(2j)2 + 3*(2j) + 1求得第一个间隔,然后将2j除以2代入求得第二个间隔,再来依此类推。

后来还有人证明有其它的间隔选定法可以将Shell排序法的速度再加快;另外Shell排序法的概念也可以用来改良气泡排序法。

#include  
#include  
#include  
#define MAX 10 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} 

void shellsort(int[]); 

int main(void) { 
    int number[MAX] = {0}; 
    int i;  

    srand(time(NULL)); 

    printf("排序前:"); 
    for(i = 0; i < MAX; i++) { 
        number[i] = rand() % 100; 
        printf("%d ", number[i]); 
    } 

    shellsort(number); 

    return 0; 
} 

void shellsort(int number[]) { 
    int i, j, k, gap, t; 

    gap = MAX / 2; 

    while(gap > 0) { 
        for(k = 0; k < gap; k++) { 
            for(i = k+gap; i < MAX; i+=gap) { 
                for(j = i - gap; j >= k; j-=gap) { 
                    if(number[j] > number[j+gap]) { 
                        SWAP(number[j], number[j+gap]); 
                    } 
                    else 
                        break; 
                } 
            } 
        } 

        printf("\ngap = %d:", gap); 
        for(i = 0; i < MAX; i++) 
            printf("%d ", number[i]); 
        printf("\n"); 

        gap /= 2; 
    } 
}

合并排序法

说明之前所介绍的排序法都是在同一个阵列中的排序,考虑今日有两笔或两笔以上的资料,它可能是不同阵列中的资料,或是不同档案中的资料,如何为它们进行排序?
解法可以使用合并排序法,合并排序法基本是将两笔已排序的资料合并并进行排序,如果所读入的资料尚未排序,可以先利用其它的排序方式来处理这两笔资料,然后再将排序好的这两笔资料合并。

有人问道,如果两笔资料本身就无排序顺序,何不将所有的资料读入,再一次进行排序?排序的精神是尽量利用资料已排序的部份,来加快排序的效率,小笔资料的 排序较为快速,如果小笔资料排序完成之后,再合并处理时,因为两笔资料都有排序了,所有在合并排序时会比单纯读入所有的资料再一次排序来的有效率。

那么可不可以直接使用合并排序法本身来处理整个排序的动作?而不动用到其它的排序方式?答案是肯定的,只要将所有的数字不断的分为两个等分,直到最后剩一个数字为止,然后再反过来不断的合并,就如下图所示:
蓝桥杯专题-真题版含答案-【骑士走棋盘】【阿姆斯壮数】【Shell 排序法 - 改良的插入排序】【合并排序法】_第1张图片
不过基本上分割又会花去额外的时间,不如使用其它较好的排序法来排序小笔资料,再使用合并排序来的有效率。
下面这个程式范例,我们使用快速排序法来处理小笔资料排序,然后再使用合并排序法处理合并的动作。

#include  
#include  
#include  
#define MAX1 10 
#define MAX2 10 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} 

int partition(int[], int, int); 
void quicksort(int[], int, int); 
void mergesort(int[], int, int[], int, int[]); 

int main(void) { 
    int number1[MAX1] = {0}; 
    int number2[MAX1] = {0}; 
    int number3[MAX1+MAX2] = {0}; 
    int i, num;  

    srand(time(NULL)); 
    printf("排序前:"); 
    printf("\nnumber1[]:"); 
    for(i = 0; i < MAX1; i++) { 
        number1[i] = rand() % 100; 
        printf("%d ", number1[i]); 
    } 

    printf("\nnumber2[]:"); 
    for(i = 0; i < MAX2; i++) { 
        number2[i] = rand() % 100; 
        printf("%d ", number2[i]); 
    } 

    // 先排序两笔资料 
    quicksort(number1, 0, MAX1-1); 
    quicksort(number2, 0, MAX2-1); 
    printf("\n排序后:"); 
    printf("\nnumber1[]:"); 
    for(i = 0; i < MAX1; i++) 
        printf("%d ", number1[i]); 
    printf("\nnumber2[]:"); 
    for(i = 0; i < MAX2; i++) 
        printf("%d ", number2[i]); 

    // 合并排序 
    mergesort(number1, MAX1, number2, MAX2, number3); 
    printf("\n合并后:"); 
    for(i = 0; i < MAX1+MAX2; i++) 
        printf("%d ", number3[i]); 
    
    printf("\n"); 
    return 0; 
} 

int partition(int number[], int left, int right) { 
    int i, j, s; 
    s = number[right]; 
    i = left - 1; 

    for(j = left; j < right; j++) { 
        if(number[j] <= s) { 
            i++; 
            SWAP(number[i], number[j]); 
        } 
    } 

    SWAP(number[i+1], number[right]); 
    return i+1; 
} 

void quicksort(int number[], int left, int right) { 
    int q; 
    if(left < right) { 
        q = partition(number, left, right); 
        quicksort(number, left, q-1); 
        quicksort(number, q+1, right); 
    } 
} 

void mergesort(int number1[], int M, int number2[], int N, int number3[]) { 
    int i = 0, j = 0, k = 0; 

    while(i < M && j < N) { 
        if(number1[i] <= number2[j]) 
            number3[k++] = number1[i++]; 
        else 
            number3[k++] = number2[j++]; 
    } 
    while(i < M) 
        number3[k++] = number1[i++]; 
    while(j < N) 
        number3[k++] = number2[j++]; 
} 

其他

作者:小空和小芝中的小空
转载说明-务必注明来源:https://zhima.blog.csdn.net/
这位道友请留步☁️,我观你气度不凡,谈吐间隐隐有王者霸气,日后定有一番大作为!!!旁边有点赞收藏今日传你,点了吧,未来你成功☀️,我分文不取,若不成功⚡️,也好回来找我。

温馨提示点击下方卡片获取更多意想不到的资源。
空名先生

你可能感兴趣的:(蓝桥全系列,蓝桥杯,职场和发展,真题,算法)