题目:
某食品公司生产两种点心①和②,采用采用原料A和B。已知生产每盒点心①和②时消耗的原料数及原料单价、月供应量及两种点心的批发价如下表所示:
据对市场估计,②点心月销量不超过2000盒,且其销量不超过点心①1000盒。要求计算使销售收人最大的计划安排。
模型建立:
设①点心的销量为 x 1 x_1 x1盒,②点心的销量为 x 2 x_2 x2盒,设销售收入为 S S S,那么可得 S = ( 30 x 1 + 20 x 2 ) − [ 9.9 ( x 1 + 2 x 2 ) + 6.6 ( 2 x 1 + x 2 ) ] = 6.9 x 1 − 6.4 x 2 S=(30x_1+20x_2)-[9.9(x_1+2x_2)+6.6(2x_1+x_2)]\\=6.9x_1-6.4x_2 S=(30x1+20x2)−[9.9(x1+2x2)+6.6(2x1+x2)]=6.9x1−6.4x2
为了使销售收入最大,所以目标函数就是 m a x S = 6.9 x 1 − 6.4 x 2 max\,\,S=6.9x_1-6.4x_2 maxS=6.9x1−6.4x2
约束条件:
根据表中数据可得原料的供应量约束为
x 1 + 2 x 2 ⩽ 6000 2 x 1 + x 2 ⩽ 8000 x_1+2x_2\leqslant6000 \\2x_1+x_2\leqslant8000 x1+2x2⩽60002x1+x2⩽8000
根据两种点心的销量关系可得销量约束为
x 2 ⩽ 2000 x 2 − x 1 ⩽ 1000 x_2\leqslant2000\\x_2-x_1\leqslant1000 x2⩽2000x2−x1⩽1000
综上可得总的约束条件为
s . t . { x 1 + 2 x 2 ⩽ 6000 2 x 1 + x 2 ⩽ 8000 x 2 ⩽ 2000 − x 1 + x 2 ⩽ 1000 x 1 , x 2 ⩾ 0 s.t.\left\{ \begin{array}{c} x_1+2x_2\leqslant 6000\\ 2x_1+x_2\leqslant 8000\\ x_2\leqslant 2000\\ -x_1+x_2\leqslant 1000\\ x_1,x_2\geqslant 0\\ \end{array} \right. s.t.⎩ ⎨ ⎧x1+2x2⩽60002x1+x2⩽8000x2⩽2000−x1+x2⩽1000x1,x2⩾0
模型求解:
下面我们使用两种方法针对上述问题进行求解,一种是利用CPLEX求解器进行求解,还有一种是利用matlab自带的intlinprog求解(由于该问题是整数规划,所以使用intlinprog)。
CPLEX求解代码:
%CPLEX求解
clc,clear,close
tic
x=intvar(2,1);
s=6.9*x(1)-6.4*x(2);
c=[x(1)+2*x(2)<=6000
2*x(1)+x(2)<=8000
x(1)<=2000
-x(1)+x(2)<=1000
x(1),x(2)>=0];
options=sdpsettings('solver','cplex','verbose',2);
result=solvesdp(c,-s,options);%由于本题是求最大值,所以加一个负号
if result.problem==0
xresult=value(x)
sresult=value(s)
else
disp('求解错误')
end
toc;
%intlinprog求解
clc,clear
s=[6.9;-6.4];
intcon=2;
a=[1,2;2,1;0,1;-1,1];
b=[6000;8000;2000;1000];
lb=zeros(2,1);
ub=[2000;2000];
[x,y]=intlinprog(-s,intcon,a,b,[],[],lb,ub)
s=-y %由于intlinprog标准形式是求最小值,所以此处取相反数最大值。