继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类设计层次的复用。
我们来看看继承的例子:
class Person
{
public:
void Print()
{
cout << _name << endl;
cout << _age << endl;
}
protected:
string _name = "Peter";
int _age = 18;
};
class Student : public Person
{
protected:
string _stuid; // 学号
};
class Teacher : public Person
{
protected:
string _jobid; // 工号
};
int main()
{
Student s;
Teacher t;
s.Print();
t.Print();
return 0;
}
子类在继承父类Person后,子类中就包含父类的成员函数与成员变量。这里就体现了Student与Teacher类复用了父类Person。
下面我们看到Person是父类,也称作基类。Student是子类,也称作派生类。
总结:
class A
{
public:
void Print()
{
cout << _a << endl;
}
int _a;
protected:
int _b;
private:
int _c;
};
class B : public A
{};
int main()
{
B b;
b._a;
b._b;
b._c;
return 0;
}
class Person
{
protected:
string _name; // 姓名
string _sex; // 性别
int _age; // 年龄
};
class Student : public Person
{
public:
int _No; // 学号
};
1、子类对象赋值给父类 对象/指针/引用,是天然的,没有类型转换
Person p;
Student s;
p = s; // 子类对象赋值给父类对象
Person* pp = &s; // 子类对象赋值给父类指针
Person& rp = s; // 子类对象赋值给父类引用
3、基类的指针可以通过强制类型转换赋值给派生类指针
Person p;
Student s;
p = s;
Person* pp = nullptr;
// 3.基类的指针可以通过强制类型转换赋值给派生类的指针
pp = &s;
Student * ps1 = (Student*)pp; // 这种情况转换时可以的。
ps1->_No = 10;
pp = &p;
Student* ps2 = (Student*)pp; // 这种情况转换时虽然可以,但是会存在越界访问的问题
ps2->_No = 10;
class Person
{
protected:
string _name = "小李子"; // 姓名
int _num = 111; // 身份证号
};
class Student : public Person
{
public:
void Print()
{
cout << " 姓名:" << _name << endl;
cout << " 身份证号:" << Person::_num << endl; // 输出基类的_num,这里需要指定作用域
cout << " 学号:" << _num << endl; // 输出自己的_num
}
protected:
int _num = 999; // 学号
};
void Test()
{
Student s1;
s1.Print();
};
2、成员方法构成隐藏
下面这段代码中 A的fun() 与 B的fun() 构成隐藏,B的fun() 隐藏 A的fun(),不是重载,重载要在同一作用域中,想要使用基类中的fun(),就要在fun()前加作用域。
class A
{
public:
void fun()
{
cout << "func()" << endl;
}
};
class B : public A
{
public:
void fun(int i)
{
A::fun(); // 调用基类的func()方法
cout << "func(int i)->" << i << endl;
}
};
void Test()
{
B b;
b.fun(10);
}
int main()
{
Test();
return 0;
}
6个默认成员函数,“默认”的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类中,这几个成员函数是如何生成的呢?
1. 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。
2. 派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。
3. 派生类的operator=必须要调用基类的operator=完成基类的复制。
4. 派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员。因为这样才能保证派生类对象先清理派生类成员再清理基类成员的顺序。
5. 派生类对象初始化先调用基类构造再调派生类构造。
6. 派生类对象析构清理先调用派生类析构再调基类的析构。
7. 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同。那么编译器会对析构函数名进行特殊处理,处理成destrutor(), 所以父类析构函数不加virtual的情况下,子类析构函数和父类析构函数构成隐藏关系
class Person
{
public:
Person(const char* name)
: _name(name)
{
cout << "Person(const char* name)" << endl;
}
// 拷贝构造
Person(const Person& p)
: _name(p._name)
{
cout << "Person(const Person& p)" << endl;
}
// 复制重载
Person& operator=(const Person & p)
{
cout << "Person operator=(const Person& p)" << endl;
if (this != &p)
_name = p._name;
return *this;
}
~Person()
{
cout << "~Person()" << endl;
}
protected:
string _name; // 姓名
};
class Student : public Person
{
public:
Student(const char* name, int num)
: Person(name)
, _num(num)
{
cout << "Student(const char* name, int num)" << endl;
}
// 拷贝构造
Student(const Student& s)
: Person(s)
, _num(s._num)
{
cout << "Student(const Student& s)" << endl;
}
// 复制重载
Student& operator=(const Student& s)
{
if (this != &s)
{
Person::operator =(s);
_num = s._num;
}
cout << "Student& operator= (const Student& s)" << endl;
return *this;
}
// 父类和子类的析构函数构成隐藏关系
// 原因:多态的需要,析构函数名统一会被处理成 destructor()
// 为了保证析构的顺序,先子后父
// 子类析构函数执行完后会自动调用父类的析构函数,不需要我们自己去调用
~Student()
{
cout << "~Student()" << endl;
}
protected:
int _num; //学号
};
int main()
{
Student s1("张三", 1);
Student s2(s1);
Student s3("李四", 2);
s1 = s3;
return 0;
}
友元关系不能继承,也就是说基类友元不能访问子类私有和保护成员。
如果想要访问子类中的成员变量,基类的友元也要是子类的友元,即Student中也要有友元声明。
class Student;
class Person
{
public:
friend void Display(const Person& p, const Student& s);
protected:
string _name; // 姓名
};
class Student : public Person
{
public:
friend void Display(const Person& p, const Student& s);
protected:
int _stuNum; // 学号
};
void Display(const Person& p, const Student& s)
{
cout << p._name << endl;
// 先要访问子类的成员变量,子类也要提供友元函数
cout << s._stuNum << endl;
}
结论: 基类定义了 static静态成员,则整个继承体系里面只有一个这样的成员。 无论派生出多少个子类,都只有一个static成员实例。
class Person
{
public:
Person() { ++_count; }
protected:
string _name; // 姓名
public:
static int _count; // 统计人的个数。
};
int Person::_count = 0;
class Student : public Person
{
protected:
int _stuNum; // 学号
};
int main()
{
cout << &Person::_count << endl;
cout << &Student::_count << endl;
return 0;
}
这里打印出来两个类域中的_count是同一个地址,所以可以理解为子类继承的是基类的静态成员的使用权,并没有在子类中有一份独立的_count。
多继承:一个子类有两个或以上直接父类时称这个继承关系为多继承
从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。在Assistant的对象中Person成员会有两份。
class Person
{
public:
string _name; // 姓名
};
class Student : public Person
{
protected:
int _num; //学号
};
class Teacher : public Person
{
protected:
int _id; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected:
string _majorCourse; // 主修课程
};
菱形继承就会导致编译器不知道访问的是哪一个类的_name,存在二义性,因此需要显示指定访问哪个父类的成员可以解决二义性问题,但是数据冗余问题无法解决。
虚拟继承可以解决菱形继承的二义性和数据冗余的问题。如上面的继承关系,在Student和Teacher的继承Person时使用虚拟继承,即可解决问题。需要注意的是,虚拟继承不要在其他地方去使用。
class Person
{
public:
string _name; // 姓名
};
class Student : virtual public Person // 虚继承的关键字:virtual
{
protected:
int _num; //学号
};
class Teacher : virtual public Person
{
protected:
int _id; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected:
string _majorCourse; // 主修课程
};
为了研究虚拟继承原理,我们给出了一个简化的菱形继承继承体系,再借助内存窗口观察对象成员的模型。
class A
{
public:
int _a;
};
// class B : public A
class B : virtual public A
{
public:
int _b;
};
// class C : public A
class C : virtual public A
{
public:
int _c;
};
class D : public B, public C
{
public:
int _d;
};
我们这里以vs2019编译器来看,其他编译器可能不是这种方法存储,但是思想都类似。
我们这里以 虚拟继承 和 非虚拟继承 对比来看:
由此我们了解了菱形虚拟继承的内存对象成员模型中,是通过了B和C的两个指针,指向的一张表。这两个指针叫虚基表指针,这两个表叫虚基表。虚基表中存的偏移量。通过 地址+偏移量 可以找到下面的A。
1、C++存在多继承。有了多继承,就存在菱形继承,有了菱形继承就有菱形虚拟继承,底层实现就很复杂。所以一般不建议设计出多继承,一定不要设计出菱形继承。否则在复杂度及性能上都有问题。
2、继承和组合