- python | reflex,一个无敌的 Python 库!
双木的木
深度学习拓展阅读python库python拓展学习python开发语言算法人工智能深度学习硬件工程异步
本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。原文链接:reflex,一个无敌的Python库!大家好,今天为大家分享一个无敌的Python库-reflex。Github地址:https://github.com/reflex-dev/reflex在软件开发过程中,事件驱动编程模型越来越受欢迎,尤其是在处理复杂的系统和实时交互时。Reflex是一个轻量级的Python库,它专注
- CTF-web: YAML是什么
A5rZ
网络安全
YAML(YAMLAin’tMarkupLanguage)是一种常见的序列化数据格式,主要用于配置文件和数据交换。它的设计目标是简洁、易读,并且易于与编程语言交互。YAML使用缩进来表示层次结构,类似于Python的语法。:基本语法结构键值对:YAML中最基本的结构是键值对,用于表示映射(类似于Python的字典)。name:JohnDoeage:30列表:用破折号(-)表示列表项。items:-
- 【第7节】OpenCompass 大模型评测实战
AI扩展坞
大模型LLM书生浦语agent
目录1基础课程笔记1.1研究大模型的评测的必要性1.2OpenCompass介绍1.2.1评测体系开源历程1.2.2如何评测大模型?1.2.2.1设计思路1.2.2.2评测的方法:(1)客观评测(2)主观评测1.2.2.3评测中关于提示词工程优化1.2.3主要产品:工具-基准-榜单三位一体1.2.3.1CompassRank性能榜单1.2.3.2全栈评测工具链1.2.3.3高质量社区-广泛的数据集
- python3调用arcpy地理加权回归_混合地理加权回归python实现代码
weixin_39942995
【实例简介】通过python编码实现MGWR、MGWTR模型的求解。能够解决空间非平稳性问题。【实例截图】【核心代码】mgwr-py└──mgwr-master├──CHANGELOG.md├──LICENSE├──MANIFEST.in├──README.md├──doc│├──Makefile│├──_static││├──images│││├──gwr-mgwr.png│││└──pysal
- python3调用arcpy地理加权回归_分析地理加权回归分析结果的操作方法
weixin_39545269
1从地理加权回归(GWR)工具生成的输出包括以下内容:输出要素类可选系数栅格表面整体模型结果的消息窗口报告显示模型变量和诊断结果的辅助表预测输出要素类2下文中将使用一系列运行GWR和解释GWR结果的步骤对以上每项输出进行说明。通常将以普通最小二乘法(OLS)开始回归分析。有关详细信息,请参阅回归分析基础知识和解释OLS回归结果。回归分析的一种常用方法是在移动到GWR之前识别可能的最佳OLS模型。此
- 等保测评过程中通常会遇到哪些常见问题
黑龙江亿林等级保护测评
安全网络web安全django大数据算法数据结构
常见问题1.信息泄露风险信息系统存储、传输和处理的敏感信息可能被非法获取,导致个人隐私泄露或商业秘密泄露。解决方法:加强数据加密措施,确保数据传输和存储的安全性,定期进行安全培训,提高员工的安全意识和应对能力。2.拒绝服务(DoS)攻击风险针对系统资源的攻击可能导致系统或服务暂时或永久不可用。解决方法:增强系统的抗DoS攻击能力,部署有效的流量监控和清洗设备。3.恶意软件风险包括计算机病毒、木马、
- 实时数据处理与模型推理:利用 Spring AI 实现对数据的推理与分析
drebander
AI编程spring人工智能
在现代企业中,实时数据处理与快速决策已经成为关键需求。通过集成SpringAI,我们不仅可以高效地获取实时数据,还可以将这些数据输入到AI模型中进行推理与分析,以便生成实时的业务洞察。本文将讲解如何通过SpringAI实现实时数据的获取、处理和基于AI模型的推理与分析。我们将探讨整个流程,从数据获取到推理结果的展示,并介绍实际的应用场景。1.系统架构设计实时数据处理和推理系统通常涉及以下几个核心模
- 利用 PyTorch 动态计算图和自动求导机制实现自适应神经网络
drebander
AI编程pytorch神经网络人工智能
在深度学习任务中,不同任务的复杂度千差万别。为了解决复杂任务对模型容量的需求,同时避免简单任务因过度拟合导致的性能下降,我们可以构建一个能够根据任务自动调整网络结构的神经网络。在PyTorch中,动态计算图和自动求导机制为实现这一目标提供了强大的工具。动态网络结构设计PyTorch的动态计算图允许我们根据运行时的输入数据或任务复杂度,动态创建和修改网络结构。动态添加/移除层:可以在训练过程中根据需
- 为大模型提供webui界面的利器:Open WebUI 完全本地离线部署deepseek r1
skywalk8163
人工智能人工智能deepseekwebui
为大模型提供webui界面的利器:OpenWebUIOpenWebUI的官网:Home|OpenWebUI开源代码:WeTab新标签页OpenWebUI是一个可扩展、功能丰富、用户友好的自托管AI平台,旨在完全离线运行。它支持各种LLM运行程序,如Ollama和OpenAI兼容的API,内置RAG推理引擎,使其成为一个强大的AI部署解决方案。安装使用pip进行安装:pipinstallopen-w
- MGWR运行报错:在模型校准过程中出现了问题,请仔细检查您的设置和数据。(Something went wrong during model calibration )
老襄
arcgis
参考MGWR使用手册,输入的XY数据需要为投影坐标,笔者是直接使用经纬度坐标出现的报错。转换投影坐标后运行成功。
- Python语言在Abaqus中的应用---2.3.1.1Abaqus对象模型之概述
Coder_Zeus
python经验分享
在Python语言基础上,Abaqus脚本接口增加了许多新的对象模型这些对象之间的层次(hierarchy)和关系(relationship)称为Abaqus对象模型(Abaqusobjectmodel)本文将详细介绍Abaqus对象模型的相关知识,包括:概述、导入模块、抽象基本模型、查询对象模型、[Tab]键自动完成功能等内容一、概述Abaqus对象模型描述了各个对象之间的关系1)定义对象的方法
- RAG:AI大模型联合向量数据库和 Llama-index,助力检索增强生成技术
AI学习不迷路
人工智能数据库llama语言模型RAG大模型AI大模型
RAG:AI大模型联合向量数据库和Llama-index,助力检索增强生成技术在大模型爆发的时代,快速准确地从大量数据中检索出有价值的信息变得至关重要。检索增强生成(RAG)技术,结合了传统的信息检索和最新的大语言模型(LLM),不仅能够回答复杂的查询,还能在此基础上生成信息丰富的内容。RAG技术的核心在于其能够将大型语言模型的生成能力与特定数据源的检索相结合。这意味着,当模型面对用户提出的问题时
- 通义千问 Qwen2-VL-2B:技术架构、核心原理、微调操作与场景应用详解
zhangjiaofa
大模型通义千问大模型多模态模型微调
通义千问Qwen2-VL-2B:技术架构、核心原理、微调操作与场景应用详解引言近年来,多模态大模型在人工智能领域取得了显著进展,尤其是在视觉语言理解(Vision-LanguageUnderstanding,VL)方面。阿里云通义千问团队推出的Qwen2-VL-2B模型,作为Qwen2-VL系列中的轻量级版本,凭借其高效的计算性能和强大的多模态处理能力,成为开源社区和工业界关注的焦点。本文将深入解
- 可解释性:走向透明与可信的人工智能
一位小说男主
人工智能入门深度学习机器学习人工智能神经网络
随着深度学习和机器学习技术的迅速发展,越来越多的行业和领域开始应用这些技术。然而,这些技术的“黑盒”特性也带来了不容忽视的挑战。在许多任务中,尽管这些模型表现出色,取得了相当高的精度,但其决策过程不透明,这对于依赖于机器决策的应用(如金融、医疗、法律等)来说,可能是无法接受的。因此,如何提高模型的可解释性、实现透明和可信的人工智能,成为了当下人工智能领域的重要课题。❤️本文将深入探讨机器学习中的可
- 【杂记-浅谈TCP/IP协议模型】
叫我小虎就行了
网络工程进阶知识TCP/IP
TCP/IP协议模型一、TCP/IP协议概述2、端口号使用规则二、TCP/IP各层级一、TCP/IP协议概述TCP/IP,TransmissionControlProtocol/InternetProtocol。TCP/IP协议是指一个有FTP、SMTP、TCP、UDP、IP等协议构成的协议簇,是互联网通信的基础,它定义了数据在网络中传输的整个流程,这个模型将网络通信的任务分解为若干层次,每一层都
- 空间权重矩阵总结
Wency(王斯-CUEB)
#空间计量经济统计矩阵算法机器学习
前言建立空间计量模型的前提,一般要引入空间权重矩阵WWW来表达nnn个位置的空间区域邻近关系。但空间权重矩阵的构造一直是备受争议的,理论是不存在最优的空间矩阵,那么在实证分析中,通常用一个词总结试一试。下文总结了目前研究中所有的空间权重矩阵。1.邻接矩阵空间矩阵的常规设定有两种,一个是简单二进制邻接矩阵,按照国际响起规则,顾名思义相邻(共边)为1,反之为0.W[i][j]=1W[i][j]=1W[
- 浅谈基于TCP/IP的HTTP和HTTPS
Jia_plus
论文网络协议httphttps
(#课程作业)摘要:关键词:TCP/IP协议;HTTP协议;HTTPS协议;TCP/IP模型也被称作DoD模型(DepartmentofDefenseModel)。TCP/IP字面上代表了两个协议:TCP(传输控制协议)和IP(网际协议)。基于TCP协议的HTTP协议和HTTPS协议就是这里面非常常用协议中的代表。HTTP协议是超文本传输协议,是一个基于请求与响应,无状态的,应用层的协议,常基于T
- MATLAB算法实战应用案例精讲-【优化算法】蘑菇繁殖优化算法(MRO)(附MATLAB代码实现)
林聪木
matlab开发语言
目录前言算法原理算法思想算法步骤优缺点带模糊需求的开放式选址路径问题的混合离散蘑菇繁殖算法1OLRP⁃FD模型1.1可信度理论1.2问题描述1.3模型2求解OLRP⁃FD的混合离散蘑菇繁殖算法2.2初始化2.3改进蘑菇繁殖算法2.4随机模拟程序2.5HDMRO算法流程基于改进蘑菇繁殖算法的机器人路径规划机器人路径规划方法研究现状路径规划方法传统路径规划方法智能路径规划方法机器人群体系统结构分布式结
- Qwen-VL论文解读
dream_home8407
人工智能
Qwen-VL:用于理解、定位、文本阅读等的通用视觉-语言模型摘要在本文中,我们介绍了Qwen-VL系列,这是一组大规模的视觉-语言模型(LVLMs),旨在感知和理解文本和图像。从Qwen-LM开始,我们通过精心设计的(i)视觉受体,(ii)输入-输出接口,(iii)3阶段训练管道,以及(iv)多语言多模态清洗语料库,赋予其视觉能力。除了传统的图像描述和问答,我们还通过图像-标题-框元组的对齐实现
- 如何在亚马逊上避免账户关联风险?全面解析与实用策略
跨境猫小妹
大数据
亚马逊账户关联问题无疑是卖家们心中的一块大石头,一旦触发关联风险,不仅可能影响流量和销量,还可能导致账户被冻结甚至封号。那么,如何有效规避这些风险,确保业务的稳定和安全呢?本文将从关联的原理出发,为您提供全方位的防关联操作流程解析。亚马逊关联风险:是什么,为什么重要?亚马逊规定,一个卖家原则上只能拥有一个账户,除非获得官方批准的多账户权限。关联风险,简而言之,就是亚马逊通过技术手段识别出多个账户属
- 单目测距(yolo-目标检测+标定+深度学习目标检测_测距)
计算机C9硕士_算法工程师
YOLO目标检测深度学习
YOLOv5模型介绍YOLOv5是目前最先进的目标检测算法之一,在多个数据集上取得了优秀的表现。相较于YOLOv4,YOLOv5采用了更深的Backbone网络和更高的分辨率输入图像,以提高检测精度和速度。单目测距实现方法在目标检测的基础上,我们可以通过计算物体在图像中的像素大小来估计其距离。具体方法是,首先确定某个物体的实际尺寸,然后根据该物体在图像中的像素大小计算其距离。这个方法可以应用于各种
- 数据挖掘常用算法模型简介
大乔乔布斯
数据挖掘线性回归决策树
以下是数据挖掘中常用的算法模型及其简称、英文全称和使用场景的简要介绍:1.决策树(DecisionTree,DT)常用算法:CART:ClassificationandRegressionTreeID3:IterativeDichotomiser3C4.5:基于ID3改进使用场景:分类问题(如信用风险评估、客户分类)回归问题(如预测房价)特点:易解释、适合处理非线性数据。2.随机森林(Random
- 2025 最新flutter面试总结
@福者
Flutterflutter面试职场和发展
目录1.Dart是值传递还是引用传递?2.Flutter是单引擎还是双引擎3.StatelessWidget和StatefulWidget在Flutter中有什么区别?4.简述Dart语音特性5.Navigator是什么?在Flutter中Routes是什么?6、Dart是不是单线程模型?是如何运行的?7.解释StatefulWidgetLifecycle?8.Dart的事件循环的运行遵循以下规则
- 基于Blackwell架构的GPU,用七十二个GPU拼接成性能强大的计算集群,其性能比上一代提升三倍,GPU已成为AI时代的基础设施,可实现各种大模型的训练
百态老人
架构人工智能
英伟达在2024年3月发布了基于Blackwell架构的GPU,这一新一代GPU在性能上相比上一代Hopper架构有显著提升。具体来说,Blackwell架构的GPU拥有2080亿个晶体管,采用台积电4纳米工艺制造,其AI性能达到了20petaflops,是前代H100GPU的五倍。Blackwell架构通过多芯片封装技术(MCM),将两个GPU集成在一起,从而解决了内存局部性和缓存问题,提高了计
- Tensorflow入门——训练结果的保存与加载
weixin_34087301
人工智能python数据库
2019独角兽企业重金招聘Python工程师标准>>>训练完成以后我们就可以直接使用训练好的模板进行预测了但是每次在预测之前都要进行训练,不是一个常规操作,毕竟有些复杂的模型需要训练好几天甚至更久所以将训练好的模型进行保存,当有需要的时候重新加载这个模型进行预测或者继续训练,这才是一个常规操作我们依然使用最简单的例子进行说明,这里沿用Tensorflow入门——实现最简单的线性回归模型的预测这个例
- 模型 冯/诺依曼思维模型
图王大胜
思维模型人工智能神经网络计算机基石管理创业
系列文章分享模型,了解更多模型_思维模型目录。分解问题,创新整合,高效解决。1冯/诺依曼思维模型的应用1.1景区创建5A级旅游景区提升规划在面对如何将某个景区创建为5A级旅游景区的复杂任务时,可以采用冯诺依曼思维模型来解决这一挑战。这个案例展示了如何将一个庞大且笼统的问题拆解为可操作的小部分,并通过重新组合这些部分来形成一个完整的解决方案。任务拆解:政策层面:研究国家和地方关于旅游景区评级的相关政
- uni-app组件引入方法(easycom自动化组件)
约妲己吃火锅
uni-app开发搬砖日常
uniapp官方与2020年02月23更新了2.6.0版本,支持2.5.5版本以后,调整内容有:1.对uniapp插件做出更改;2.新增了easycom项目模板(自动化组件)。那我本期简单给大家介绍easycom是什么?如何使用?。官方给出:传统vue组件,需要安装、引用、注册,三个步骤后才能使用组件。easycom将其精简为一步。只要组件安装在项目的components目录下,并符合compon
- 查找地理处理工具
pianmian1
arcgis
操作方法:1.在arcmap中打开目标地图2.单机Geoprocessing菜单,选择SearchForTools,打开Search窗口3.在搜索文本框中输入Clip,当开始输入这个单词时,搜索文本框会根据用户输入的字母自动匹配搜索结果4.单机Search按钮,即可生成一个匹配的工具列表.在搜索结果中,锤子图标表示工具,卷轴图标表示python脚本,含有彩色方格的表示模型5.选择Clip工具,将打
- ‘Accept-Encoding‘: ‘gzip, deflate, br‘ 的 含义
暮雨疏桐
httphttps
Accept-Encoding是HTTP协议中的一个头部字段,其主要作用在于告知服务器客户端能够理解的内容编码方式。这个字段对于网络传输效率的优化非常重要,因为它允许服务器根据客户端的能力来压缩响应数据,从而减少传输的数据量,加快网页加载速度。以下是关于Accept-Encoding的详细解释:作用:告知服务器客户端支持的内容压缩编码方式。允许服务器根据客户端的支持情况选择合适的压缩算法来压缩响应
- Depth Anything V2:单目深度估计的更强基线
武朵欢Nerissa
DepthAnythingV2:单目深度估计的更强基线项目地址:https://gitcode.com/gh_mirrors/de/Depth-Anything-V2项目介绍DepthAnythingV2是由HKU与TikTok团队合作开发的单目深度估计算法的升级版本。这个框架显著提升了细节处理能力和鲁棒性,相比于基于深度学习的方法,它提供了更快的推理速度、更少的参数量以及更高的深度预测精度。本项
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key