大体来说,MySQL可以分为Server层和存储引擎层两部分
Server层:Server层包括连接器、查询缓存、分析器、优化器、执行器等。以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。
存储引擎层:负责数据的存储和提取。其架构模式是插件式的,最常用的存储引擎是InnoDB
使用一条查询语句走完执行过程
mysql> select * from T where ID=10;
第一步,你会先连接到这个数据库上,这时候接待你的就是连接器。连接器负责跟客户端建立连接、获取权限、维持和管理连接
数据库里面,长连接是指连接成功后,如果客户端持续有请求,则一直使用同一个连接。短连接则是指每次执行完很少的几次查询就断开连接,下次查询再重新建立一个。
尽量使用长连接,但是全部使用长连接后,你可能会发现,有些时候MySQL占用内存涨得特别快,这是因为
MySQL在执行过程中临时使用的内存是管理在连接对象里面的。这些资源会在连接断开的时候才释放。所以如果长连接累积下来,可能导致内存占用太大,被系统强行杀掉(OOM)
解决方案:
MySQL拿到一个查询请求后,会先到查询缓存看看,之前是不是执行过这条语句。之前执行过的语句及其结果可能会以key-value对的形式,被直接缓存在内存中。key是查询的语句,value是查询的结果。如果你的查询能够直接在这个缓存中找到key,那么这个value就会被直接返回给客户端。
但是大多数情况下不建议使用查询缓存
**理由:**查询缓存的失效非常频繁,只要有对一个表的更新,这个表上所有的查询缓存都会被清空。除非你的业务就是有一张静态表,可以用查询缓存
可以将参数query_cache_type设置成DEMAND,这样对于默认的SQL语句都不使用查询缓存。而对于你确定要使用查询缓存的语句,可以用SQL_CACHE显式指定
mysql> select SQL_CACHE * from T where ID=10;
!MySQL 8.0版本直接将查询缓存的整块功能删掉了
如果没有命中查询缓存,就要开始真正执行语句了。
分析器先会做“词法分析”。你输入的是由多个字符串和空格组成的一条SQL语句,MySQL需要识别出里面的字符串分别是什么,代表什么。以mysql> select * from T where ID=10;为例。MySQL从你输入的"select"这个关键字识别出来,这是一个查询语句。它也要把字符串“T”识别成“表名T”,把字符串“ID”识别成“列ID”。
接下来就要做“语法分析”。根据词法分析的结果,语法分析器会根据语法规则,判断你输入的这个SQL语句是否满足MySQL语法。
优化器是在表里面有多个索引的时候,决定使用哪个索引;或者在一个语句有多表关联(join)的时候,决定各个表的连接顺序。优化器阶段完成后,这个语句的执行方案就确定下来了
注:表索引(Table Index)是数据库中用于提高查询速度的一种数据结构
类型:常见的索引类型包括主键索引、唯一索引、复合索引等。
主键索引:保证表中每行数据的唯一性。
唯一索引:确保索引列的所有值都是唯一的。CREATE UNIQUE INDEX
复合索引:包含两个或更多列。
语法:
CREATE INDEX index_name
ON table_name (column1 [ASC|DESC], column2 [ASC|DESC], ...);
数据结构: 索引通常使用特定的数据结构来存储,例如B树(B-Tree)和B+树(B+Tree)。这些数据结构优化了数据的检索速度,而不是顺序查找
开始执行的时候,要先判断一下你对这个表T有没有执行查询的权限,如果没有,就会返回没有
权限的错误
如果没有错误,执行器就会根据表的引擎定义,去使用这个引擎提供的接口
更新语句示例:
mysql> update T set c=c+1 where ID=2;
执行语句前要先连接数据库,这是连接器的工作。
前面我们说过,在一个表上有更新的时候,跟这个表有关的查询缓存会失效,所以这条语句就会
把表T上所有缓存结果都清空。这也就是我们一般不建议使用查询缓存的原因。
接下来,分析器会通过词法和语法解析知道这是一条更新语句。优化器决定要使用ID这个索引。
然后,执行器负责具体执行,找到这一行,然后更新。
与查询流程不一样的是,更新流程还涉及两个重要的日志模块,它们正是我们今天要讨论的主
角:redo log(重做日志)和 binlog(归档日志)。
在MySQL里,如果每一次的更新操作都需要写进磁盘,然后磁盘也要找到对应的那条记录,然后再更新,整个过程IO成本、查找成本都很高。为了解决这个问题提出WAL技术,WAL的全称是Write-Ahead Logging,它的关键点就是先写日志,再写磁盘,也就是先写粉板,等不忙的时候再写账
本。
具体来说,当有一条记录需要更新的时候,InnoDB引擎就会先把记录写到redo log(粉板)里
面,并更新内存,这个时候更新就算完成了。同时,InnoDB引擎会在适当的时候,将这个操作
记录更新到磁盘里面,而这个更新往往是在系统比较空闲的时候做
如果今天赊账的不多,掌柜可以等打烊后再整理。但如果某天赊账的特别多,粉板写满了,又怎
么办呢?这个时候掌柜只好放下手中的活儿,把粉板中的一部分赊账记录更新到账本中,然后把
这些记录从粉板上擦掉,为记新账腾出空间。
InnoDB的redo log是固定大小的,比如可以配置为一组4个文件,每个文件的大小是1GB,那么这块“粉板”总共就可以记录4GB的操作。从头开始写,写到末尾就又回到开头循环写。
write pos是当前记录的位置,一边写一边后移,写到第3号文件末尾后就回到0号文件开头。
checkpoint是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文
件。write pos和checkpoint之间的是“粉板”上还空着的部分,可以用来记录新的操作。如果write pos
追上checkpoint,表示“粉板”满了
有了redo log,InnoDB就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个
能力称为crash-safe。要理解crash-safe这个概念,可以想想我们前面赊账记录的例子。只要赊账记录记在了粉板上或写在了账本上,之后即使掌柜忘记了,比如突然停业几天,恢复生意后依然可以通过账本和粉板上的数据明确赊账账目。
一块是Server层,它主要做的是MySQL功能层面的事情;还有一块是引擎层,负责存储相关的具体事宜。上面我们聊到的粉板redo log是InnoDB引擎特有的日志,而Server层也有自己的日志,称为binlog(归档日志)
这两种日志有以下三点不同。
这时,我们再来看执行器和InnoDB引擎在执行这个简单的update语句时的内部流程。
为什么必须有“两阶段提交”呢?这是为了让两份日志之间的逻辑一致
从**怎样让数据库恢复到半个月内任意一秒的状态?**说起
如果数据库半个月内可以恢复,那么备份系统中一定会保存最近半个月的所有binlog,同时系统会定期做整库备份。这里的“定期”取决于系统的重要性,可以是一天一备,也可以是一周一备。
当需要恢复到指定的某一秒时,比如某天下午两点发现中午十二点有一次误删表,需要找回数
据,那你可以这么做:
首先,找到最近的一次全量备份,如果你运气好,可能就是昨天晚上的一个备份,从这个备
份恢复到临时库;
然后,从备份的时间点开始,将备份的binlog依次取出来,重放到中午误删表之前的那个时
刻。
这样你的临时库就跟误删之前的线上库一样了,然后你可以把表数据从临时库取出来,按需要恢
复到线上库去。
那么为什么需要“两阶段提交”?
反证法:
由于redo log和binlog是两个独立的逻辑,如果不用两阶段提交,要么就是先写完redo log再写
binlog,或者采用反过来的顺序。
mysql> update T set c=c+1 where ID=2;
假设执行update语句过程中在写完第一个日志后,第二个日志还没有写完期间发生了crash
1.先写redo log后写binlog。
假设在redo log写完,binlog还没有写完的时候,MySQL进程异常重启。由于我们前面说过的,redo log写完之后,系统即使崩溃,仍然能够把数据恢复回来,所以恢复后这一行c的值是1。但是由于binlog没写完就crash了,这时候binlog里面就没有记录这个语句。因此,之后备份日志的时候,存起来的binlog里面就没有这条语句。然后你会发现,如果需要用这个binlog来恢复临时库的话,由于这个语句的binlog丢失,这个临时库就会少了这一次更新,恢复出来的这一行c的值就是0,与原库的值不同。
结语:
redo log用于保证crash-safe能力。innodb_flush_log_at_trx_commit这个参数设置成1的时候,
表示每次事务的redo log都直接持久化到磁盘。这个参数我建议你设置成1,这样可以保证
MySQL异常重启之后数据不丢失。
sync_binlog这个参数设置成1的时候,表示每次事务的binlog都持久化到磁盘。这个参数我也建
议你设置成1,这样可以保证MySQL异常重启之后binlog不丢失。