给定 n n n 块互不相交的矩形,询问 ( 0 , 0 ) ( a , b ) (0,0)(a, b) (0,0)(a,b) 区域内矩形面积和
先判断矩形跟区域是否有重叠的部分,如果有,求出重叠的部分
#include
using namespace std;
typedef long long ll;
typedef double db;
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
#define fi first
#define se second
typedef pair<int, int> pii;
ll n, a, b;
ll ans;
ll cal(ll x1, ll y1, ll x2, ll y2){
x1 = max(x1, 0ll);
y1 = max(y1, 0ll);
x2 = min(x2, a);
y2 = min(y2, b);
ll res = (x2 - x1) * (y2 - y1);
return res;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> a >> b;
for(int i = 1; i <= n; i++){
ll x1, x2, y1, y2;
cin >> x1 >> y1 >> x2 >> y2;
if(x2 <= 0 || y2 <= 0 || x1 >= a || y1 >= b)
continue;
ans += cal(x1, y1, x2, y2);
}
cout << ans;
return 0;
}
n n n 块土地,每块土地花费 t i t_i ti天,总耗时为最大的时间。有 m m m 资源,在第 i i i 块土地使用 c i c_i ci 资源可以使时间减少一天。询问最少需要多少天
使最大的 t i t_i ti 最小,可以二分答案。对于当前的时间 x x x ,如果一块土地的时间大于 x x x,则花费资源将时间减少到 x x x花费的资源是否小于 m m m
#include
using namespace std;
typedef long long ll;
typedef double db;
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
#define fi first
#define se second
typedef pair<int, int> pii;
int n, m, k;
int t[maxn], c[maxn];
int ans;
bool check(int x){
int cost = 0;
for(int i = 1; i <= n; i++){
if(t[i] > x){
cost += c[i] * (t[i]-x);
}
}
return cost <= m;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> m >> k;
int l = k, r = 0;
for(int i = 1; i <= n; i++){
cin >> t[i] >> c[i];
r = max(r, t[i]);
}
while(l <= r){
int mid = (l+r) >>1;
if(check(mid)){
r = mid-1;
ans = mid;
}
else
l = mid+1;
}
cout << ans;
return 0;
}
每个用户有若干属性,每个属性有一个值。
有 m m m 个表达式,选出满足表达式的用户。
直接模拟即可
#include
using namespace std;
typedef long long ll;
typedef double db;
const int maxn = 1e5+10;
const int maxm = 505;
#define fi first
#define se second
typedef pair<int, int> pii;
struct User{
int id;
vector<int> s;
User(){
s.resize(505);
for(int i = 0; i < s.size(); i++)
s[i] = -1;
}
};
struct Base{
int op; // 1 为满足 2为不满足
int pos, val;
};
struct Expr{
int op; //0 为原子,1为&,2为|
Base expr1;
Base expr2;
};
vector<User> users;
vector<Expr> exprs;
int n, m;
Base exchangeBase(string s){
int pos = 0;
for(int i = 0; i < s.size(); i++){
if(s[i] == ':' || s[i] == '~'){
pos = i;
break;
}
}
Base base;
int x = 0, val = 0;
for(int i = 0; i < pos; i++)
x = x * 10 + s[i]-'0';
for(int i = pos+1; i < s.size(); i++)
val = val * 10 + s[i] -'0';
if(s[pos] == ':')
base.op = 1;
else
base.op = 2;
base.pos = x;
base.val = val;
return base;
}
void check(Expr expr){
vector<int> res;
res.clear();
for(int i = 0; i < users.size(); i++){
User user = users[i];
if(expr.op == 0){
if(expr.expr1.op == 1){ // 相等
if(user.s[expr.expr1.pos] == expr.expr1.val)
res.push_back(user.id);
}
else if(expr.expr1.op == 2){
if(user.s[expr.expr1.pos] != -1)
if(user.s[expr.expr1.pos] != expr.expr1.val)
res.push_back(user.id);
}
}
else if(expr.op == 1){ // 且
int flag1 = 0, flag2 = 0;
if(expr.expr1.op == 1){ // 相等
if(user.s[expr.expr1.pos] == expr.expr1.val)
flag1 = 1;
}
else if(expr.expr1.op == 2){
if(user.s[expr.expr1.pos] != -1)
if(user.s[expr.expr1.pos] != expr.expr1.val)
flag1 = 1;
}
if(flag1 == 0)
continue;
if(expr.expr2.op == 1){ // 相等
if(user.s[expr.expr2.pos] == expr.expr2.val)
flag2 = 1;
}
else if(expr.expr2.op == 2){
if(user.s[expr.expr2.pos] != -1)
if(user.s[expr.expr2.pos] != expr.expr2.val)
flag2 = 2;
}
if(flag1 && flag2)
res.push_back(user.id);
}
else{
int flag1 = 0, flag2 = 0;
if(expr.expr1.op == 1){ // 相等
if(user.s[expr.expr1.pos] == expr.expr1.val)
flag1 = 1;
}
else{
if(user.s[expr.expr1.pos] != -1)
if(user.s[expr.expr1.pos] != expr.expr1.val)
flag1 = 1;
}
if(flag1){
res.push_back(user.id);
continue;
}
if(expr.expr2.op == 1){ // 相等
if(user.s[expr.expr2.pos] == expr.expr2.val)
flag2 = 1;
}
else if(expr.expr2.op == 2){
if(user.s[expr.expr2.pos] != -1)
if(user.s[expr.expr2.pos] != expr.expr2.val)
flag2 = 2;
}
if(flag2)
res.push_back(user.id);
}
}
sort(res.begin(), res.end());
for(int i = 0; i < res.size(); i++){
if(i != 0)
cout << " " << res[i];
else
cout << res[i];
}
cout << endl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n;
for(int i = 1; i <= n; i++){
User user;
int id, cnt;
cin >> id >> cnt;
for(int j = 1; j <= cnt; j++){
int x, val;
cin >> x >> val;
user.s[x] = val;
}
user.id = id;
users.push_back(user);
}
cin >> m;
for(int k = 1; k <= m; k++){
string s;
cin >> s;
Expr expr;
if(s[0] == '&' || s[0] == '|'){
int len = 0;
int pos = 0;
for(int i = 1; i < s.size(); i++){
if(s[i] == ')'){
len = i - 2;
pos = i;
break;
}
}
int len2 = s.size()-len-5;
expr.expr1 = exchangeBase(s.substr(2, len));
expr.expr2 = exchangeBase(s.substr(pos+2, len2));
if(s[0] == '&')
expr.op = 1;
else
expr.op = 2;
}
else{
expr.expr1= exchangeBase(s);
expr.op = 0;
}
exprs.push_back(expr);
}
for(int i = 0; i < exprs.size(); i++){
check(exprs[i]);
}
return 0;
}
有区间 [ 1 , n ] [1,n] [1,n],有 m m m 辆车,每辆车可以恰好覆盖 [ l i , r i ] [l_i,r_i] [li,ri]。询问有多少二元组 ( L , R ) (L,R) (L,R) 满足 [ L , R ] [L,R] [L,R] 内的点都被覆盖至少一次, [ L , R ] [L,R] [L,R] 之外的点都没有被覆盖
复杂度为 O ( n 2 ) O(n^2) O(n2) 的思路:
容易发现,只有车的端点才有可能对答案产生贡献。
将所有车按右端点升序排序。
对于遍历到的当前车 i i i,统计 L = l i L = l_i L=li 的答案个数。
对于前边的车 k ( k < i ) k(k < i) k(k<i), k k k 一定不会产生贡献,因为 r k ≤ r i r_k \le r_i rk≤ri。对于后边的车 j ( j > i ) j(j>i) j(j>i),如果 l j < l i l_j < l_i lj<li ,则 j j j 不会对答案产生贡献;如果 l j > c u r R + 1 l_j > curR+1 lj>curR+1, j j j 区间连不上当前区间,也不会答案产生贡献。即 l j ≥ l i l_j \ge l_i lj≥li 且 l j < = c u r R + 1 l_j <= curR+1 lj<=curR+1 的 j j j 才会产生贡献,并用 r j r_j rj 更新 c u r R curR curR。( c u r R curR curR 为左端点为 l i l_i li 时,能连成的区间右端点最大值)
用 s e t set set 去掉重复的区间
对于特殊性质 A :区间不会包含
则任意两区间只能是 “相交”,“相离” 的关系。
依然按照右端点排序,预处理每个区间后能连上区间个数 g ( i ) g(i) g(i)。
倒序处理。如果区间 i i i 与区间 i + 1 i+1 i+1 相交,则 g ( i ) = g ( i + 1 ) + 1 g(i) = g(i+1)+1 g(i)=g(i+1)+1; 否则 g ( i ) = 0 g(i) = 0 g(i)=0
答案为 ∑ i ( 1 + g ( i ) ) \sum\limits_i(1+g(i)) i∑(1+g(i)),时间复杂度为 O ( n log n ) O(n\log n) O(nlogn)
#include
using namespace std;
typedef long long ll;
typedef double db;
const int maxn = 2e5+10;
const int INF = 0x3f3f3f3f;
#define fi first
#define se second
typedef pair<int, int> pii;
struct node{
int l, r;
node(){}
node(int l, int r) : l(l), r(r){}
bool operator < (const node &b) const{
if(r == b.r)
return l < b.l;
else
return r < b.r;
}
bool operator == (const node &b) const{
return l == b.l && r == b.r;
}
};
set<node> se;
int n, m;
//node s[maxn];
vector<node> s;
int g[maxn];
ll ans = 0;
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> m;
for(int i = 1; i <= m; i++){
//cin >> s[i].l >> s[i].r;
int l, r;
cin >> l >>r;
s.push_back((node){l, r});
}
//sort(s+1, s+1+m);
sort(s.begin(), s.end());
//s.erase(unique(s.begin(), s.end()), s.end());
if(n > 3000){
g[m-1] = 0;
for(int i = s.size()-2; i >= 0; i--){
if(s[i].r >= s[i+1].l-1)
g[i] = g[i+1]+1;
else
g[i] = 0;
}
for(int i = 0; i < m; i++){
ans += g[i]+1;
}
cout << ans << endl;
return 0;
}
for(int i = 0; i < s.size(); i++){
int curr = s[i].r;
int res = 1;
if(se.count(node(s[i].l, s[i].r)) == 0)
se.insert(node(s[i].l, s[i].r));
else
res = 0;
for(int j = i+1; j < s.size(); j++){
if(s[j].l < s[i].l)
continue;
if(s[j].l <= curr+1){
curr = max(curr, s[j].r);
if(se.count(node(s[i].l, s[j].r)) == 0){
se.insert(node(s[i].l, s[j].r));
res++;
}
}
}
ans += res;
}
cout << ans << endl;
return 0;
}
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
int n;
db x, res;
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> x;
for(int i = 0; i <= n; i++){
db y; cin >> y;
res += y * pow(1 + x, -i);
}
cout << setprecision(10) << res << endl;
return 0;
}
一个科目耗时 t i t_i ti,一些科目有前置科目,只有当前置科目学完时,才能开始学当前科目。前置科目的编号一定小于当前科目。
询问每一项科目的最早开始时间。询问在完成的情况下的最晚开始时间,如果不能完成则不输出。
建图,科目看成节点,依赖关系看成边,前置科目向当前科目连边;对于没有前置科目的科目,0号节点向该节点连边。
在dfs的过程中,当前节点为 u u u,记录 u u u 的深度 d e p u dep_u depu,以及以 u u u 为根的子树的高度 m a x d e p u maxdep_u maxdepu,即 u u u 到 u u u 子树中节点的最大距离。
对节点 u u u ,执行完 u u u 的父亲之后就可以执行 u u u 。因此执行完 u u u 的父亲需要时间 d e p ( f a [ u ] ) dep(fa[u]) dep(fa[u])。从时刻 1 开始执行,所以 u u u 可以开始执行的时间为 1 + d e p ( f a [ u ] ) 1 + dep(fa[u]) 1+dep(fa[u])。
首先判断能不能全部执行完,即 m a x d e p 0 maxdep_0 maxdep0 是否大于 n n n。
然后对每个节点 u u u,执行完 u u u 子树的时间为 t u + m a x d e p u t_u + maxdep_u tu+maxdepu,所以答案为 n + 1 − t u − m a x d e p u n+1-t_u - maxdep_u n+1−tu−maxdepu
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
int n, m;
int p[maxn];
int t[maxn];
int head[maxn], tot;
struct edge{
int to, nxt, w;
}e[maxn];
void add(int a, int b, int c){
e[++tot].nxt = head[a];
e[tot].to = b;
e[tot].w = c;
head[a] = tot;
}
int dep[maxn], maxdep[maxn], fa[maxn];
void dfs(int u){
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
int w = e[i].w;
fa[v] = u;
dep[v] = dep[u] + w;
dfs(v);
maxdep[u] = max(maxdep[u], w + maxdep[v]);
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> m;
for(int i = 1; i <= m; i++)
cin >> p[i];
for(int i = 1; i <= m; i++)
cin >> t[i];
for(int i = 1; i <= m; i++){
add(p[i], i, t[i]);
}
dfs(0);
for(int i = 1; i <= m; i++)
cout << 1 + dep[fa[i]]<< " ";
cout << endl;
if(maxdep[0] > n)
return 0;
for(int i = 1; i <= m; i++){
int res = n - maxdep[i] - t[i] + 1;
cout << res << " ";
}
return 0;
}
大模拟
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
const db pi = acos(-1);
typedef pair<int, int> pii;
int q[10][10];
db m[10][10];
db mres[10][10];
int ans[10][10];
int a[100];
db f(int x){
if(x == 0)
return sqrt(0.5);
else
return 1;
}
int dx[6] = {0, 0, -1, 1, 1, -1};
int dy[6] = {-1, 1, 0, 0, -1, 1};
int nxt[8][8] = {
{1, 4, 1, 4, 1, 4, 1, 4},
{3, 5, 4, 5, 4, 5, 4, 3},
{5, 4, 5, 4, 5, 4, 5, 4},
{3, 5, 4, 5, 4, 5, 4, 3},
{5, 4, 5, 4, 5, 4, 5, 4},
{3, 5, 4, 5, 4, 5, 4, 3},
{5, 4, 5, 4, 5, 4, 5, 4},
{1, 5, 1, 5, 1, 5, 1, -1}} ;
// l r u d ld, ru 左0 右1 上2 下3 左下4 右上5
void fillm(){
int x = 0, y = 0;
for(int i = 1; i <= 64; i++){
m[x][y] = a[i];
int op = nxt[x][y];
if(op == -1)
break;
x = x+dx[op];
y = y+dy[op];
}
}
void m_mul_q(){
for(int i = 0; i < 8; i++)
for(int j = 0; j < 8; j++)
m[i][j] *= q[i][j];
}
void printm(){
for(int i = 0; i < 8; i++){
for(int j = 0; j < 8; j++)
cout << m[i][j] << " ";
cout << endl;
}
}
db exchange(int i, int j){
db res = 0;
for(int u = 0; u < 8; u++)
for(int v = 0; v < 8; v++)
res += 0.25*f(u) * f(v) * m[u][v] * cos(pi/8*(i+0.5)*u) * cos(pi/8*(j+0.5)*v);
//res /= 4;
return res;
}
void change(){
for(int i = 0; i < 8; i++)
for(int j = 0; j < 8; j++)
mres[i][j] = exchange(i, j);
}
void addm(){
for(int i = 0; i < 8; i++){
for(int j = 0; j < 8; j++){
db res = mres[i][j] + 128;
if(res > 255)
ans[i][j] = 255;
else if(res < 0)
ans[i][j] = 0;
else
ans[i][j] = (int)(res+0.5);
}
}
}
void printans(){
for(int i = 0; i < 8; i++){
for(int j = 0; j < 8; j++)
cout << ans[i][j] << " ";
cout << endl;
}
}
int n, T;
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
for(int i = 0; i < 8; i++)
for(int j = 0; j < 8; j++)
cin >> q[i][j];
cin >> n >> T;
for(int i = 1; i <= n; i++)
cin >> a[i];
if(T == 0){
fillm(); //3
printm();
}
else if(T == 1){
fillm(); //3
m_mul_q(); //4
printm();
}
else{
fillm(); //3
m_mul_q(); //4
change();//5
addm();//6
printans();
}
return 0;
}
给定一个树,询问每个子树 u u u 的 g ( A u ) = ∑ i min j ≠ i ( a i − a j ) 2 g(A_u) = \sum\limits_i \min\limits_{j \neq i}(a_i-a_j)^2 g(Au)=i∑j=imin(ai−aj)2。 A u A_u Au 是 u u u 子树的节点集, i , j i,j i,j 是节点集中的节点, a a a 是节点的点权。
65分解析:
对于一个集合 A u A_u Au,差的最小绝对值一定是排序后的相邻位置,所以先排序,然后计算 g ( A u ) g(A_u) g(Au),计算一次的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)。
dfs的时候,合并儿子的子树,然后计算当前节点的 g ( A u ) g(A_u) g(Au)。总的时间复杂度为 O ( n 2 l o g n ) O(n^2logn) O(n2logn)
100解析:树上启发式合并(DSU ON TREE)暂时还不会
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 3e5+10;
const ll INF = 0x3f3f3f3f3f3f3f3f;
typedef pair<int, int> pii;
int n;
ll fans[maxn];
ll a[maxn];
struct edge{
int to, nxt;
}e[maxn << 1];
int head[maxn], tot;
void add(int a, int b){
e[++tot].nxt = head[a];
e[tot].to = b;
head[a] = tot;
}
vector<ll> merge(vector<ll> &src1,vector<ll> &src2){
vector<ll> res;
int i = 0, j = 0;
for(; i < src1.size()&& j < src2.size(); ){
if(src1[i] < src2[j])
res.push_back(src1[i++]);
else
res.push_back(src2[j++]);
}
while(i < src1.size())
res.push_back(src1[i++]);
while(j < src2.size())
res.push_back(src2[j++]);
return res;
}
ll cal(vector<ll> s){
if(s.size() == 1)
return 0;
sort(s.begin(), s.end());
ll answ = 0;
for(int i = 0; i < s.size(); i++){
ll res = INF;
if(i > 0)
res = min(res, (s[i]-s[i-1]) * (s[i]-s[i-1]));
if(i + 1 < s.size())
res = min(res, (s[i]-s[i+1]) * (s[i]-s[i+1]));
answ += res;
}
return answ;
}
vector<ll> dfs(int u){
vector<ll> res;
res.push_back(a[u]);
vector<ll> s;
for(int i = head[u]; i; i = e[i].nxt){
int v = e[i].to;
s = dfs(v);
res = merge(res, s);
}
fans[u] = cal(res);
return res;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n;
for(int i = 2; i <= n; i++){
int x; cin >> x;
add(x, i);
}
for(int i = 1; i <= n; i++)
cin >> a[i];
dfs(1);
for(int i = 1; i <= n; i++)
cout << fans[i] << endl;
return 0;
}
给定序列 a a a, a a a 的前缀积为序列 c c c。给定 m m m, m = ∑ i = 1 n c i − 1 × b i m = \sum\limits_{i=1}\limits^nc_{i-1}\times b_i m=i=1∑nci−1×bi。求序列 b b b
通过取模得到 c i − 1 × b i c_{i-1}\times b_i ci−1×bi 的前缀和,然后得到每一个 c i − 1 × b i c_{i-1} \times b_i ci−1×bi,然后得到 b i b_i bi
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define endl '\n'
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
int n, m;
int a[maxn], b[maxn], c[maxn];
void solve(){
cin >> n >> m;
for(int i = 1; i <= n; i++)
cin >> a[i];
c[0] = 1;
for(int i = 1; i <= n; i++)
c[i] = c[i-1] * a[i];
for(int i = 1; i <= n; i++)
b[i] = m % c[i];
for(int i = n; i >= 2; i--)
b[i] = b[i]-b[i-1];
for(int i = 1; i <= n; i++)
b[i] = b[i]/c[i-1];
for(int i = 1; i <= n; i++)
cout << b[i] << " ";
cout << endl;
return;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int T = 1;
while(T--)
solve();
return 0;
}
选一些书,使价值和 m m m 满足 m ≥ x m \ge x m≥x 且最小
01背包。
令 f i , j f_{i,j} fi,j 为前 i i i 本书,价值和为 j j j 是否可行。
状态转移方程为 f i , j = f i − 1 , j ∣ f i − 1 , j − a i f_{i,j} = f_{i-1,j} | f_{i-1,j-a_i} fi,j=fi−1,j∣fi−1,j−ai
初值为 f 0 , 0 = 1 f_{0,0} = 1 f0,0=1
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 3e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
int f[maxn], a[maxn];
int n, x, v;
void solve(){
cin >> n >> x;
f[0] = 1;
for(int i = 1; i <= n; i++){
cin >> a[i];
v += a[i];
}
for(int i = 1; i <= n; i++){
for(int j = v; j >= a[i]; j--){
f[j] |= f[j-a[i]];
}
}
for(int i = x; i <= v; i++){
if(f[i]){
cout << i << endl;
return;
}
}
return;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int T = 1;
while(T--)
solve();
return 0;
}
大模拟
用set维护当天风险地区,vector保存当前的记录。
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e4+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
struct pmsg{
int d, u, r;
pmsg(int d, int u, int r) : d(d), u(u), r(r){}
pmsg(){}
};
vector<pmsg> pm[maxn];
set<int> rm[maxn];
vector<int> res[maxn];
int n, r, m;
void solve(){
cin >> n;
for(int i = 0; i < n; i++){
cin >> r >> m;
for(int j = 1; j <= r; j++){
int a;
cin >> a;
for(int k = i; k <= min(i+6, n); k++)
rm[i].insert(a);
}
for(int j = 1; j <= m; j++){
int a, b, c;
cin >> a >> b >> c;
pm[i].push_back(pmsg(a, b, c));
}
int st = max(i-6, 0);
for(int j = st; j <= i; j++){
for(int k = 0; k < pm[j].size(); k++){
int u = pm[j][k].u;
int d = pm[j][k].d;
int r = pm[j][k].r;
if(d < st)
continue;
int flag = 1;
for(int kk = d; kk <= i; kk++){
if(rm[kk].count(r) == 0){
flag = 0;
break;
}
}
if(flag)
res[i].push_back(u);
}
}
}
for(int i = 0; i < n; i++){
cout << i << ": ";
sort(res[i].begin(), res[i].end());
res[i].erase(unique(res[i].begin(), res[i].end()), res[i].end());
for(int j = 0; j < res[i].size(); j++)
cout << res[i][j] << " ";
cout << endl;
}
return;
}
int main(){
solve();
return 0;
}
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
db a[maxn], n;
db ave, d;
db f(db x){
db res = (x-ave)/sqrt(d);
return res;
}
void solve(){
cin >> n;
for(int i = 1; i <= n; i++){
cin >> a[i];
ave += a[i];
}
ave /= n;
for(int i = 1; i <= n; i++)
d += (a[i] - ave) * (a[i] - ave);
d /= n;
for(int i = 1; i <= n; i++)
cout << setprecision(12) << f(a[i]) << endl;
return;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int T = 1;
while(T--)
solve();
return 0;
}
对每棵树,维护以该树为左下角的附近的树的位置。
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e3+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
int n, l, s;
int a[55][55];
struct tree{
int x, y;
int c[55][55];
tree(){memset(c, 0, sizeof(c));}
tree(int x, int y) : x(x), y(y){c[0][0] = 1;}
void add(int px, int py){
if(px < x || px > x + s || py < y || py > y + s)
return;
int tx = px - x;
int ty = py - y;
c[tx][ty] = 1;
}
bool check(){
if(x > l-s || y > l-s)
return false;
for(int i = 0; i <= s; i++){
for(int j = 0; j <= s; j++){
if(a[i][j] != c[i][j])
return false;
}
}
return true;
}
}t[maxn];
void solve(){
cin >> n >> l >> s;
for(int i = 1; i <= n; i++){
int x, y;
cin >> x >> y;
t[i] = tree(x, y);
}
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
if(i == j)
continue;
int tx = t[j].x;
int ty = t[j].y;
t[i].add(tx, ty);
}
}
for(int i = s; i >= 0; i--){
for(int j = 0; j <= s; j++){
cin >> a[i][j];
}
}
int ans = 0;
for(int i = 1; i <= n; i++){
if(t[i].check())
ans++;
}
cout << ans << endl;
return;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int T = 1;
while(T--)
solve();
return 0;
}
大模拟
每个角色是三个集合,存该角色的信息。
用map存名字字符串到类的映射,从而根据名快速找到类。
注意常数级别的优化。
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define endl '\n'
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
typedef set<string>::iterator S_IT;
struct role{
set<string> op;
set<string> kind;
set<string> source;
};
struct group{
set<string> ro;
};
struct people{
set<string> gr;
set<string> ro;
};
map<string, role> mprole;
map<string, group> mpgroup;
map<string, people> mppeople;
bool check(people user, string opt, string kindt, string sourcet){
for(S_IT it = user.ro.begin(); it != user.ro.end(); it++){
string roname = *it;
int flag1 = mprole[roname].op.count("*") || mprole[roname].op.count(opt);
if(flag1 == 0) continue;
int flag2 = mprole[roname].kind.count("*") || mprole[roname].kind.count(kindt);
if(flag2 == 0) continue;
int flag3 = mprole[roname].source.empty() || mprole[roname].source.count(sourcet);
if(flag3 == 0) continue;
return true;
}
for(S_IT it = user.gr.begin(); it != user.gr.end(); it++){
string grname = *it;
if(mpgroup.count(grname) == 0)
continue;
for(S_IT itt = mpgroup[grname].ro.begin(); itt != mpgroup[grname].ro.end(); itt++){
string roname = *itt;
int flag1 = mprole[roname].op.count("*") || mprole[roname].op.count(opt);
if(flag1 == 0) continue;
int flag2 = mprole[roname].kind.count("*") || mprole[roname].kind.count(kindt);
if(flag2 == 0) continue;
int flag3 = mprole[roname].source.empty() || mprole[roname].source.count(sourcet);
if(flag3 == 0) continue;
return true;
}
}
return false;
}
int n, m, q;
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> m >> q;
string name, tmp;
int nv, no, nn;
for(int i = 1; i <= n; i++){ //角色role
cin >> name >> nv;
for(int j = 1; j <= nv; j++){
cin >> tmp;
mprole[name].op.insert(tmp);
}
cin >> no;
for(int j = 1; j <= no; j++){
cin >> tmp;
mprole[name].kind.insert(tmp);
}
cin >> nn;
for(int j = 1; j <= nn; j++){
cin >> tmp;
mprole[name].source.insert(tmp);
}
}
int ns;
string ch, namet;
for(int i = 1; i <= m; i++){ //角色关联
cin >> name >> ns;
for(int j = 1; j <= ns; j++){
cin >> ch >> namet;
if(ch == "g")
mpgroup[namet].ro.insert(name);
else
mppeople[namet].ro.insert(name);
}
}
int ng;
string opt, kindt, sourcet;
for(int i = 1; i <= q; i++){ //行为
cin >> name >> ng;
for(int i = 1; i <= ng; i++){
cin >> namet;
mppeople[name].gr.insert(namet);
}
cin >> opt >> kindt >> sourcet;
if(check(mppeople[name], opt, kindt, sourcet))
cout << 1 << endl;
else
cout << 0 << endl;
mppeople[name].gr.clear();
}
return 0;
}
实现点的平移,旋转,放缩,对称,投影
询问一群点的重心、到某点距离的平方和
关于投影操作,过定作垂线,交点即为投影点
过于对称操作,先求出投影点,然后平移即可
暂时有锅
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
int n, k;
int vis[maxn];
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> k;
int cnt = 0;
vis[0] = 1;
for(int i = 1; i <= k; i++){
int x, y;
cin >> x >> y;
if(!vis[y])
cnt++;
vis[x] = 1;
}
cout << cnt << endl;
return 0;
}
区间修,单点查询。
差分即可(线段树、树状数组也行)
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e6+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
int lowbit(int x){return x & (-x);}
int cc[maxn];
int maxx;
void insert(int x, int v){
while(x <= maxx){
cc[x] += v;
x += lowbit(x);
}
}
void update(int l, int r, int v){
insert(l, v);
insert(r+1, -v);
}
int query(int x){
int res = 0;
while(x){
res += cc[x];
x -= lowbit(x);
}
return res;
}
int t[maxn], c[maxn];
int n, m, k, maxt;
//[t-k-c+1, t-k]
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> m >> k;
for(int i = 1; i <= n; i++){
cin >> t[i] >> c[i];
maxt = max(maxt, t[i]+c[i]);
}
maxx = maxt;
for(int i = 1; i <= n; i++){
if(t[i]-k < 1)
continue;
update(max(1, t[i]-k-c[i]+1), t[i]-k, 1);
}
for(int i = 1, q; i <= m; i++){
cin >> q;
int res = query(q);
//cout << "ans = ";
cout << res << endl;
}
return 0;
}
大模拟
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
struct node{
int id;
int pos;
int cnt;
set<int> task;
node(){}
node(int id, int pos, int cnt) : id(id), pos(pos), cnt(cnt){}
bool operator < (const node &b) const{
if(cnt == b.cnt)
return id < b.id;
else
return cnt < b.cnt;
}
};
unordered_map<int, node> mp;
typedef unordered_map<int, node>::iterator M_IT;
typedef vector<int>::iterator V_IT;
vector<int> id;
int n, m;
void require_na(int x, vector<int> &b){ //节点亲和性
for(auto it = b.begin(); it != b.end();){
if(mp[*it].pos != x)
b.erase(it);
else
it++;
}
}
void require_pa(int x, vector<int> &b){ //任务亲和性
set<int> s;//区
for(auto it = mp.begin(); it != mp.end(); it++){
if((*it).se.task.count(x))
s.insert((*it).se.pos);
}
for(auto it = b.begin(); it != b.end();){
if(s.count(mp[*it].pos) == 0)
b.erase(it);
else
it++;
}
}
vector<int> require_paa(int x, vector<int> &b){
vector<int> res;
for(int i = 0; i < b.size(); i++)
res.push_back(b[i]); //copy
for(auto it = res.begin(); it != res.end();){
if(mp[*it].task.count(x))
res.erase(it);
else
it++;
}
return res;
}
bool cmp(int a, int b){
return mp[a] < mp[b];
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> m;
for(int i = 1; i <= n; i++){
int pos; cin >> pos;
mp[i] = node(i, pos, 0);
id.push_back(i);
}
int T; cin >> T;
while(T--){
int q, a, na, pa, paa, paar;
cin >> q >> a >> na >> pa >> paa >> paar;
while(q--){
vector<int> tmp = id;
vector<int> tmp2;
vector<int> res;
if(na) //节点亲和性
require_na(na, tmp);
if(pa) //任务亲和性
require_pa(pa, tmp);
if(paa) //反亲和性
tmp2 = require_paa(paa, tmp);
if(!paa) // 没有反亲和
res = tmp;
else{ //有反亲和
if(tmp2.size() == 0 && paar == 0) // 尽量满足且结果空
res = tmp;
else
res = tmp2;
}
if(res.size() == 0){
cout << 0 << " ";
continue;
}
sort(res.begin(), res.end(), cmp);
int nodeid = res[0];
cout << nodeid << " ";
mp[nodeid].cnt++;
mp[nodeid].task.insert(a);
}
cout << endl;
}
return 0;
}
分段求和
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
ll n, N;
ll a[maxn];
ll ans;
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> N;
for(int i = 1; i <= n; i++)
cin >> a[i];
a[n+1] = N;
for(int i = 0; i <= n; i++){
ll cnt = a[i+1]-a[i];
ans += cnt * i;;
}
cout << ans << endl;
return 0;
}
按 f i f_i fi 分段,每一段内 f f f 值不变, g g g 单调不减。
如果 g m a x ≤ f g_{max} \le f gmax≤f 或 g m i n ≥ f g_{min} \ge f gmin≥f 直接求和即可;否则分为两段分别求和。
对 g g g 求和的时候,可以先计算前缀和
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> pii;
ll n, N;
ll a[maxn];
ll ans, r;
ll g(int x){
return x/r;
}
ll sumg(int x){
ll cnt = (x+1)/r;
ll res = (cnt)*(cnt-1)/2*r + (x+1)%r*cnt;
return res;
}
ll cal(ll ql, ll qr, ll f){
return abs(sumg(qr)-sumg(ql-1) - (qr-ql+1) * f);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> N;
r = N/(n+1);
for(int i = 1; i <= n; i++)
cin >> a[i];
a[n+1] = N;
for(int i = 0; i <= n; i++){
ll ql = a[i];
ll qr = a[i+1]-1;
ll f = i;
if(g(qr) <= f || g(ql) >= f)
ans += cal(ql, qr, f);
else{
int pos = r * f;
ans += cal(ql, pos, f);
ans += cal(pos+1, qr, f);
}
}
cout << ans << endl;
return 0;
}
大模拟
对编码数据产生数字,然后用数字产生码字。
对于校验码: x k d ( x ) ≡ q ( x ) g ( x ) − r ( x ) x^kd(x)\equiv q(x)g(x)-r(x) xkd(x)≡q(x)g(x)−r(x) , g ( x ) g(x) g(x) 已知
所以 x k d ( x ) ≡ − r ( x ) ( m o d g ( x ) ) x^kd(x)\equiv -r(x) \:(mod\;g(x)) xkd(x)≡−r(x)(modg(x))
k k k 次多项式 g k ( k ) = g k − 1 ( x ) × ( x − 3 k ) g_k(k) = g_{k-1}(x) \times (x-3^k) gk(k)=gk−1(x)×(x−3k)
多项式除法模拟即可
#include
using namespace std;
typedef long long ll;
typedef double db;
#define fi first
#define se second
const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;
const int mod = 929;
typedef pair<int, int> pii;
int curmode;
vector<int> number;
vector<int> code;
vector<int> verify;
vector<int> gx;
vector<int> d;
int g[2][maxn];
int w, s, vlen;
string str;
ll qpow_mod(ll a, ll b){
ll res = 1;
while(b){
if(b&1)
res = res * a % mod;
a = a * a % mod;
b = b >> 1;
}
return res;
}
void putnumber(char c){
if(c >= '0' && c <= '9'){
if(curmode != 2){
number.push_back(28);
curmode = 2;
}
number.push_back(c-'0');
}
else if(c >= 'a' && c <= 'z'){
if(curmode != 1){
number.push_back(27);
curmode = 1;
}
number.push_back(c-'a');
}
else if(c >= 'A' && c <= 'Z'){
if(curmode == 1){
number.push_back(28);
number.push_back(28);
}
if(curmode == 2)
number.push_back(28);
curmode = 0;
number.push_back(c-'A');
}
}
void get_gx(int k){
memset(g, 0, sizeof(g));
int cur = 1, pre = 0;
g[pre][0] = -3;
g[pre][1] = 1;
for(int i = 2; i <= k; i++){
// (x-3^i)
g[cur][0] = 0;
ll c = (mod - qpow_mod(3, i)) % mod;
for(int j = 1; j <= k+1; j++)
g[cur][j] = g[pre][j-1];
for(int j = 0; j <= k+1; j++){
ll tmp = (g[pre][j] * c) % mod;
g[cur][j] = ((g[cur][j] + tmp) % mod + mod) % mod;
}
cur ^= 1;
pre ^= 1;
}
for(int i = 0; i <= k; i++)
gx.push_back(g[pre][i]);
}
void print(vector<int> &b){
for(auto x : b)
cout << x << " ";
cout << endl;
}
void get_verify(int k){
for(int i = 1; i <= k; i++)
d.push_back(0);
for(int i = code.size()-1; i >= 0; i--) //倒着
d.push_back(code[i]);
//print(gx);
//print(d);
for(int i = d.size()-1; i >= k; i--){
int cnt = d[i];
for(int j = 0; j < gx.size(); j++){
d[i-j] = d[i-j] - cnt * gx[gx.size()-1-j];
d[i-j] = (d[i-j]%mod+mod)%mod;
}
}
for(int i = k-1; i >= 0; i--){
int x = (mod-d[i])%mod;
cout << x << endl;
}
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> w >> s;
cin >> str;
for(int i = 0; i < str.length(); i++)
putnumber(str[i]);
if(number.size()%2)
number.push_back(29);
code.push_back(0);
for(int i = 0; i < number.size(); i += 2){
int res = 30 * number[i] + number[i+1];
code.push_back(res);
}
if(s == -1){
while(code.size()%w != 0)
code.push_back(900);
code[0] = code.size();
for(int i = 0; i < code.size(); i++)
cout << code[i] << endl;
}
else{
vlen = qpow_mod(2, s+1);
while((vlen+code.size())%w != 0)
code.push_back(900);
code[0] = code.size();
for(int i = 0; i < code.size(); i++)
cout << code[i] << endl;
get_gx(vlen);
get_verify(vlen);
}
return 0;
}