1.数据集简介
振动数据来源于美国凯斯西储大学的开发数据集。轴承试验装置的示意图如图1-1所示。平台组成:
一个1.5KW(2马力)的电动机(图左侧);
一个扭矩传感器/ 译码器(图中间连接处);
一个功率测试计(图右侧);
驱动端轴承为SKF6205 ,采样频率为12Khz和48Khz;
电子控制器(图中没显示) 。
DE - drive end accelerometer data 驱动端加速度数据;
FE - fan end accelerometer data 风扇端加速度数据;
BA - base accelerometer data 基座加速度数据(正常);
time - time series data 时间序列数据;
RPM- rpm during testing 转每分钟,除以60为旋转频率;
B -滚动体故障;IR – 内圈故障;OR –外圈故障;
驱动端和风扇端轴承外圈的损伤点分别放置在3点钟、6点钟、12点钟三个不同位置。
数据文件为Matlab格式。每个文件包含风扇和驱动端振动数据,以及电机转速。
例子:12k_Fan_End_OR007@6_3_297.mat
12k:12KHZ采样频率
Fan_End_OR:风扇端外圈故障
007:直径
@6:外圈的损伤点在6点钟位置
3:表电机载荷模式
297:编号。
数据集由
12kHz采样率下电机端轴承的故障数据(DE)60个、
12kHz采样率下风扇端轴承的故障数据(FE)45个、
48kHz采样率下电机端轴承的故障数据(DE)52个,
还有正常运转的轴承数据4个组成。
图1-2 12k驱动端故障数据列表
2.数据集下载
3.python 训练及验证数据集制作代码.
from scipy.io import loadmat
import numpy as np
import os
from sklearn import preprocessing # 0-1编码
from sklearn.model_selection import StratifiedShuffleSplit # 随机划分,保证每一类比例相同
def prepro(d_path, length=864, number=1000, normal=True, rate=[0.5, 0.25, 0.25], enc=True, enc_step=28):
"""对数据进行预处理,返回train_X, train_Y, valid_X, valid_Y, test_X, test_Y样本.
:param d_path: 源数据地址
:param length: 信号长度,默认2个信号周期,864
:param number: 每种信号个数,总共10类,默认每个类别1000个数据
:param normal: 是否标准化.True,Fales.默认True
:param rate: 训练集/验证集/测试集比例.默认[0.5,0.25,0.25],相加要等于1
:param enc: 训练集、验证集是否采用数据增强.Bool,默认True
:param enc_step: 增强数据集采样顺延间隔
:return: Train_X, Train_Y, Valid_X, Valid_Y, Test_X, Test_Y
```
import preprocess.preprocess_nonoise as pre
train_X, train_Y, valid_X, valid_Y, test_X, test_Y = pre.prepro(d_path=path,
length=864,
number=1000,
normal=False,
rate=[0.5, 0.25, 0.25],
enc=True,
enc_step=28)
```
"""
# 获得该文件夹下所有.mat文件名
filenames = os.listdir(d_path)
def capture(original_path):
"""读取mat文件,返回字典
:param original_path: 读取路径
:return: 数据字典
"""
files = {}
for i in filenames:
# 文件路径
file_path = os.path.join(d_path, i)
file = loadmat(file_path)
file_keys = file.keys()
for key in file_keys:
if 'DE' in key:
files[i] = file[key].ravel()
return files
def slice_enc(data, slice_rate=rate[1] + rate[2]):
"""将数据切分为前面多少比例,后面多少比例.
:param data: 单挑数据
:param slice_rate: 验证集以及测试集所占的比例
:return: 切分好的数据
"""
keys = data.keys()
Train_Samples = {}
Test_Samples = {}
for i in keys:
slice_data = data[i]
all_lenght = len(slice_data)
end_index = int(all_lenght * (1 - slice_rate))
samp_train = int(number * (1 - slice_rate)) # 700
Train_sample = []
Test_Sample = []
if enc:
enc_time = length // enc_step
samp_step = 0 # 用来计数Train采样次数
for j in range(samp_train):
random_start = np.random.randint(low=0, high=(end_index - 2 * length))
label = 0
for h in range(enc_time):
samp_step += 1
random_start += enc_step
sample = slice_data[random_start: random_start + length]
Train_sample.append(sample)
if samp_step == samp_train:
label = 1
break
if label:
break
else:
for j in range(samp_train):
random_start = np.random.randint(low=0, high=(end_index - length))
sample = slice_data[random_start:random_start + length]
Train_sample.append(sample)
# 抓取测试数据
for h in range(number - samp_train):
random_start = np.random.randint(low=end_index, high=(all_lenght - length))
sample = slice_data[random_start:random_start + length]
Test_Sample.append(sample)
Train_Samples[i] = Train_sample
Test_Samples[i] = Test_Sample
return Train_Samples, Test_Samples
# 仅抽样完成,打标签
def add_labels(train_test):
X = []
Y = []
label = 0
for i in filenames:
x = train_test[i]
X += x
lenx = len(x)
Y += [label] * lenx
label += 1
return X, Y
# one-hot编码
def one_hot(Train_Y, Test_Y):
Train_Y = np.array(Train_Y).reshape([-1, 1])
Test_Y = np.array(Test_Y).reshape([-1, 1])
Encoder = preprocessing.OneHotEncoder()
Encoder.fit(Train_Y)
Train_Y = Encoder.transform(Train_Y).toarray()
Test_Y = Encoder.transform(Test_Y).toarray()
Train_Y = np.asarray(Train_Y, dtype=np.int32)
Test_Y = np.asarray(Test_Y, dtype=np.int32)
return Train_Y, Test_Y
def scalar_stand(Train_X, Test_X):
# 用训练集标准差标准化训练集以及测试集
scalar = preprocessing.StandardScaler().fit(Train_X)
Train_X = scalar.transform(Train_X)
Test_X = scalar.transform(Test_X)
return Train_X, Test_X
def valid_test_slice(Test_X, Test_Y):
test_size = rate[2] / (rate[1] + rate[2])
ss = StratifiedShuffleSplit(n_splits=1, test_size=test_size)
for train_index, test_index in ss.split(Test_X, Test_Y):
X_valid, X_test = Test_X[train_index], Test_X[test_index]
Y_valid, Y_test = Test_Y[train_index], Test_Y[test_index]
return X_valid, Y_valid, X_test, Y_test
# 从所有.mat文件中读取出数据的字典
data = capture(original_path=d_path)
# 将数据切分为训练集、测试集
train, test = slice_enc(data)
# 为训练集制作标签,返回X,Y
Train_X, Train_Y = add_labels(train)
# 为测试集制作标签,返回X,Y
Test_X, Test_Y = add_labels(test)
# 为训练集Y/测试集One-hot标签
Train_Y, Test_Y = one_hot(Train_Y, Test_Y)
# 训练数据/测试数据 是否标准化.
if normal:
Train_X, Test_X = scalar_stand(Train_X, Test_X)
else:
# 需要做一个数据转换,转换成np格式.
Train_X = np.asarray(Train_X)
Test_X = np.asarray(Test_X)
# 将测试集切分为验证集合和测试集.
Valid_X, Valid_Y, Test_X, Test_Y = valid_test_slice(Test_X, Test_Y)
return Train_X, Train_Y, Valid_X, Valid_Y, Test_X, Test_Y
if __name__ == "__main__":
path = r'D:\360安全浏览器下载\轴承故障检测\数据源\西储大学\CWRU轴承数据\cwru_data\0'
train_X, train_Y, valid_X, valid_Y, test_X, test_Y = prepro(d_path=path,
length=864,
number=1000,
normal=False,
rate=[0.5, 0.25, 0.25],
enc=False,
enc_step=28)