- 副本虽然能够提高数据的可用性,降低丢失风险,但是每台服务器实际上必须容纳全量 数据,对数据的横向扩容没有解决。
- 要解决数据水平切分的问题,需要引入分片的概念。通过分片把一份完整的数据进行切 分,不同的分片分布到不同的节点上,再通过 Distributed 表引擎把数据拼接起来一同使用。
- Distributed 表引擎本身不存储数据,有点类似于 MyCat 之于 MySql,成为一种中间件,
通过分布式逻辑表来写入、分发、路由来操作多台节点不同分片的分布式数据。
注意:ClickHouse 的集群是表级别的,实际企业中,大部分做了高可用,但是没有用分 片,避免降低查询性能以及操作集群的复杂性。
将internal_replication设置为true,distribute表只需要同步hdp1、hdp3和hdp5,副本的同步就使用hdp1、hdp3和hdp5来同步;如果是false,则6个节点数据都由distribute来同步,性能不高。
errors_count表示在此节点读取数据发生的错误,比如网络等等
配置的位置还是在之前的/etc/clickhouse-server/config.d/metrika.xml,内容如下
注:也可以不创建外部文件,直接在 config.xml 的
中指定
<yandex>
<remote_servers>
<gmall_cluster> <!-- 集群名称--> <shard> <!--集群的第一个分片-->
<internal_replication>true</internal_replication>
<!--该分片的第一个副本--> <replica>
<host>hadoop101</host>
<port>9000</port> </replica> <!--该分片的第二个副本--> <replica>
<host>hadoop102</host>
<port>9000</port>
</replica>
</shard>
<shard> <!--集群的第二个分片--> <internal_replication>true</internal_replication> <replica> <!--该分片的第一个副本-->
<host>hadoop103</host>
<port>9000</port>
</replica>
<replica> <!--该分片的第二个副本-->
<host>hadoop104</host>
<port>9000</port>
</replica>
</shard>
<shard> <!--集群的第三个分片--> <internal_replication>true</internal_replication> <replica> <!--该分片的第一个副本-->
<host>hadoop105</host>
<port>9000</port>
</replica>
<replica> <!--该分片的第二个副本-->
<host>hadoop106</host>
<port>9000</port>
</replica>
</shard>
</gmall_cluster>
</remote_servers>
</yandex>
1)在 hadoop102 的/etc/clickhouse-server/config.d 目录下创建 metrika-shard.xml 文件
注:也可以不创建外部文件,直接在 config.xml 的
中指定
<yandex>
<remote_servers>
<gmall_cluster>
<shard>
<internal_replication>trueinternal_replication>
<replica>
<host>hadoop102host>
<port>9000port>
replica>
<replica>
<host>hadoop103host> <port>9000port>
replica>
shard>
<shard>
<internal_replication>trueinternal_replication>
<replica>
<host>hadoop104host>
<port>9000port>
replica>
shard>
gmall_cluster>
remote_servers>
<zookeeper-servers>
<node index="1">
<host>hadoop102host>
<port>2181port>
node>
<node index="2">
<host>hadoop103host>
<port>2181port>
node>
<node index="3">
<host>hadoop104host>
<port>2181port>
node>
zookeeper-servers>
<macros>
<shard>01shard>
<replica>rep_1_1replica>
macros>
yandex>
2)将 hadoop102 的 metrika-shard.xml 同步到 103 和 104
sudo /home/atguigu/bin/xsync /etc/clickhouse-server/config.d/metrika-shard.xml
3)修改 103 和 104 中 metrika-shard.xml 宏的配置
4)在 hadoop102 上修改/etc/clickhouse-server/config.xml
5)同步/etc/clickhouse-server/config.xml 到 103 和 104
sudo /home/atguigu/bin/xsync
/etc/clickhouse-server/config.xml
6)重启三台服务器上的 ClickHouse 服务
7)在 hadoop102 上执行建表语句
- 会自动同步到hadoop103和hadoop104上
- 集群名字要和配置文件中的一致
- 分片和副本名称从配置文件的宏定义中获取
create table st_order_mt on cluster gmall_cluster (
id UInt32,
sku_id String,
total_amount Decimal(16,2), create_time Datetime
) engine
=ReplicatedMergeTree('/clickhouse/tables/{shard}/st_order_mt','{replica}')
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id,sku_id);![请添加图片描述](https://img-blog.csdnimg.cn/direct/7d073b9d165545dea23c28fc875d4e72.png)
可以到 hadoop103 和 hadoop104 上查看表是否创建成功
8)在 hadoop102 上创建 Distribute 分布式表
create table st_order_mt_all2 on cluster gmall_cluster
(
id UInt32,
sku_id String,
total_amount Decimal(16,2),
create_time Datetime
)engine = Distributed(gmall_cluster,default, st_order_mt,hiveHash(sku_id));
参数含义
- Distributed(集群名称,库名,本地表名,
- 分片键) 分片键必须是整型数字,所以用 hiveHash 函数转换,也可以 rand()
9)在 hadoop102 上插入测试数据
insert into st_order_mt_all2 values
(201,'sku_001',1000.00,'2020-06-01 12:00:00') ,
(202,'sku_002',2000.00,'2020-06-01 12:00:00'),
(203,'sku_004',2500.00,'2020-06-01 12:00:00'),
(204,'sku_002',2000.00,'2020-06-01 12:00:00'),
(205,'sku_003',600.00,'2020-06-02 12:00:00');
10)通过查询分布式表和本地表观察输出结果
不需要求改文件引用,因为已经使用集群建表了,如果改为引用 metrika-shard.xml 的话,启动会报错。我们以后用的时候只启动 102 即可。