RT-Thread 之 DAC设备驱动调试

文章目录

  • 前言
    • 这篇文章主要是对RTthread studio 软件进行DAC设备驱动2路调试总结。
  • 一、RT-Thread Settings配置
  • 二、CubeMX配置
    • 1.CubeMX的DAC初始化配置
    • 2.CubeMX的DAC初始化代码复制
  • 三、代码程序编写
    • 1.修改驱动代码
    • 2.修改宏定义代码
    • 3.用户代码编写
  • 四、测试实验结果
  • 五、注意事项


前言

这篇文章主要是对RTthread studio 软件进行DAC设备驱动2路调试总结。

一、RT-Thread Settings配置

RT-Thread Settings配置,将DAC驱动打开(具体打开步骤如下图所示)。

RT-Thread 之 DAC设备驱动调试_第1张图片

二、CubeMX配置

1.CubeMX的DAC初始化配置

1)打开DAC
2)勾选输出通道
3)检查是否配置好IO口
4)生成MDK代码
RT-Thread 之 DAC设备驱动调试_第2张图片

2.CubeMX的DAC初始化代码复制

1)CubeMX代码复制。
RT-Thread 之 DAC设备驱动调试_第3张图片

2)CubeMX代码粘贴并且修改函数名。
RT-Thread 之 DAC设备驱动调试_第4张图片

三、代码程序编写

1.修改驱动代码

(1)在/drivers/include/config文件夹下新建dac_config.h

#ifndef __DAC_CONFIG_H__
#define __DAC_CONFIG_H__

#include <rtthread.h>

#ifdef __cplusplus
extern "C" {
#endif

#ifdef BSP_USING_DAC1
#ifndef DAC1_CONFIG
#define DAC1_CONFIG                                                    \
    {                                                                  \
       .Instance                      = DAC1,                          \
    }
#endif /* DAC1_CONFIG */
#endif /* BSP_USING_DAC1 */

#ifdef BSP_USING_DAC2
#ifndef DAC2_CONFIG
#define DAC2_CONFIG                                                    \
    {                                                                  \
       .Instance                      = DAC2,                          \
    }
#endif /* DAC2_CONFIG */
#endif /* BSP_USING_DAC2 */

#ifdef __cplusplus
}
#endif

#endif /* __DAC_CONFIG_H__ */

(2)修改/drivers/include/drv_config.h

#if defined(SOC_SERIES_STM32F0)
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/tim_config.h"
#include "config/pwm_config.h"
#include "config/adc_config.h"
#elif defined(SOC_SERIES_STM32F1)
#include "config/dac_config.h" //新增
#include "config/dma_config.h"
#include "config/uart_config.h"
#include "config/spi_config.h"
#include "config/adc_config.h"
#include "config/tim_config.h"
#include "config/sdio_config.h"
#include "config/pwm_config.h"
#include "config/usbd_config.h"
#include "config/pulse_encoder_config.h"

(3)在drivers文件夹下新建drv_dac.c

/*
 * Copyright (c) 2006-2021, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author            Notes
 * 2020-06-18     thread-liu        the first version
 * 2020-10-09     thread-liu   Porting for stm32h7xx
 */

#include <board.h>
#include<rtthread.h>
#include<rtdevice.h>

#if defined(BSP_USING_DAC1) || defined(BSP_USING_DAC2)
#include "drv_config.h"

//#define DRV_DEBUG
#define LOG_TAG             "drv.dac"
#include <drv_log.h>

static DAC_HandleTypeDef dac_config[] =
{
#ifdef BSP_USING_DAC1
    DAC1_CONFIG,
#endif

#ifdef BSP_USING_DAC2
    DAC2_CONFIG,
#endif
};

struct stm32_dac
{
    DAC_HandleTypeDef DAC_Handler;
    struct rt_dac_device stm32_dac_device;
};

static struct stm32_dac stm32_dac_obj[sizeof(dac_config) / sizeof(dac_config[0])];

static rt_uint32_t stm32_dac_get_channel(rt_uint32_t channel)
{
    rt_uint32_t stm32_channel = 0;

    switch (channel)
    {
    case  1:
        stm32_channel = DAC_CHANNEL_1;
        break;
    case  2:
        stm32_channel = DAC_CHANNEL_2;
        break;
    default:
        RT_ASSERT(0);
        break;
    }

    return stm32_channel;
}

static rt_err_t stm32_dac_enabled(struct rt_dac_device *device, rt_uint32_t channel)
{
    uint32_t dac_channel;
    DAC_HandleTypeDef *stm32_dac_handler;
    RT_ASSERT(device != RT_NULL);
    stm32_dac_handler = device->parent.user_data;

#if 1
    if ((channel <= 2) && (channel > 0))
    {
        /* set stm32 dac channel */
        dac_channel =  stm32_dac_get_channel(channel);
    }
    else
    {
      LOG_E("dac channel must be 1 or 2.");
      return -RT_ERROR;
    }
    HAL_DAC_Start(stm32_dac_handler, dac_channel);
#endif

    return RT_EOK;
}

static rt_err_t stm32_dac_disabled(struct rt_dac_device *device, rt_uint32_t channel)
{
    uint32_t dac_channel;
    DAC_HandleTypeDef *stm32_dac_handler;
    RT_ASSERT(device != RT_NULL);
    stm32_dac_handler = device->parent.user_data;

#if 1
    if ((channel <= 2) && (channel > 0))
    {
        /* set stm32 dac channel */
        dac_channel =  stm32_dac_get_channel(channel);
    }
    else
    {
      LOG_E("dac channel must be 1 or 2.");
      return -RT_ERROR;
    }
    HAL_DAC_Stop(stm32_dac_handler, dac_channel);
#endif

    return RT_EOK;
}

static rt_err_t stm32_set_dac_value(struct rt_dac_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
    uint32_t dac_channel;
    DAC_ChannelConfTypeDef DAC_ChanConf;
    DAC_HandleTypeDef *stm32_dac_handler;

    RT_ASSERT(device != RT_NULL);
    RT_ASSERT(value != RT_NULL);

    stm32_dac_handler = device->parent.user_data;

    rt_memset(&DAC_ChanConf, 0, sizeof(DAC_ChanConf));

#if 1
    if ((channel <= 2) && (channel > 0))
    {
        /* set stm32 dac channel */
        dac_channel =  stm32_dac_get_channel(channel);
    }
    else
    {
      LOG_E("dac channel must be 1 or 2.");
      return -RT_ERROR;
    }
#endif

#if 1
    DAC_ChanConf.DAC_Trigger      = DAC_TRIGGER_NONE;
    DAC_ChanConf.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;
#endif
    /* config dac out channel*/
    if (HAL_DAC_ConfigChannel(stm32_dac_handler, &DAC_ChanConf, dac_channel) != HAL_OK)
    {
        LOG_D("Config dac out channel Error!\n");
        return -RT_ERROR;
    }
    /* set dac channel out value*/
    if (HAL_DAC_SetValue(stm32_dac_handler, dac_channel, DAC_ALIGN_12B_R, *value) != HAL_OK)
    {
        LOG_D("Setting dac channel out value Error!\n");
        return -RT_ERROR;
    }
    /* start dac */
    if (HAL_DAC_Start(stm32_dac_handler, dac_channel) != HAL_OK)
    {
        LOG_D("Start dac Error!\n");
        return -RT_ERROR;
    }

    return RT_EOK;
}

static const struct rt_dac_ops stm_dac_ops =
{
    .disabled = stm32_dac_disabled,
    .enabled  = stm32_dac_enabled,
    .convert  = stm32_set_dac_value,
};

static int stm32_dac_init(void)
{
    int result = RT_EOK;
    /* save dac name */
    char name_buf[5] = {'d', 'a', 'c', '0', 0};
    int i = 0;

    for (i = 0; i < sizeof(dac_config) / sizeof(dac_config[0]); i++)
    {
        /* dac init */
        name_buf[3] = '0';
        stm32_dac_obj[i].DAC_Handler = dac_config[i];
#if defined(DAC1)
        if (stm32_dac_obj[i].DAC_Handler.Instance == DAC1)
        {
            name_buf[3] = '1';
        }
#endif
#if defined(DAC2)
        if (stm32_dac_obj[i].dac_Handler.Instance == DAC2)
        {
            name_buf[3] = '2';
        }
#endif
        if (HAL_DAC_Init(&stm32_dac_obj[i].DAC_Handler) != HAL_OK)
        {
            LOG_E("%s init failed", name_buf);
            result = -RT_ERROR;
        }
        else
        {
            /* register dac device */
            if (rt_hw_dac_register(&stm32_dac_obj[i].stm32_dac_device, name_buf, &stm_dac_ops, &stm32_dac_obj[i].DAC_Handler) == RT_EOK)
            {
                LOG_D("%s init success", name_buf);
            }
            else
            {
                LOG_E("%s register failed", name_buf);
                result = -RT_ERROR;
            }
        }
    }

    return result;
}
INIT_DEVICE_EXPORT(stm32_dac_init);

#endif /* BSP_USING_DAC */

2.修改宏定义代码

1)在bord.h里面添加#define BSP_USING_DAC1。(仿照ADC的步骤来写)
在这里插入图片描述
2)在stm32f1xx_hal_conf_bak.h里面添加#define HAL_DAC_MODULE_ENABLED
RT-Thread 之 DAC设备驱动调试_第5张图片

3.用户代码编写

我是新建了一个user_dac.c文件,将用户代码写在该文件里面。通过DAC 设备将电压输出。
RT-Thread 之 DAC设备驱动调试_第6张图片
根据官方提供的用户代码修改后:

/*
 * 程序清单: DAC 设备使用例程
 * 例程导出了 dac_sample 命令到控制终端
 * 命令调用格式:dac_sample
 * 程序功能:通过 DAC 设备将数字值转换为模拟量,并输出电压值。
 *           示例代码参考电压为3.3V,转换位数为12位。
*/

#include <rtthread.h>
#include <rtdevice.h>
#include <stdlib.h>
#define DAC_DEV_NAME        "dac1"  /* DAC 设备名称 */
#define DAC_DEV_CHANNEL    1      /* DAC 通道 */
#define DAC_DEV_CHANNEL2    2      /* DAC 通道 */
#define REFER_VOLTAGE       330         /* 参考电压 3.3V,数据精度乘以100保留2位小数*/
#define CONVERT_BITS        (1 << 12)   /* 转换位数为12位 */

rt_uint32_t dac_date=3000;
rt_uint32_t dac_date2=2000;
static int dac1_vol_sample();
static int dac2_vol_sample();

static void dac1_write_distance_entry(void *parameter)
{

    while(1)
    {
        dac1_vol_sample();
        rt_thread_mdelay(1000);
        dac2_vol_sample();
        rt_thread_mdelay(1000);
    }

}

static int dac1_vol_sample()
{
    rt_dac_device_t dac_dev;
    rt_uint32_t value, vol;
    rt_err_t ret = RT_EOK;

    /* 查找设备 */
    dac_dev = (rt_dac_device_t)rt_device_find(DAC_DEV_NAME);
    if (dac_dev == RT_NULL)
    {
        rt_kprintf("dac sample run failed! can't find %s device!\n", DAC_DEV_NAME);
        return RT_ERROR;
    }

    /* 打开通道 */
    ret = rt_dac_enable(dac_dev, DAC_DEV_CHANNEL);

    /* 设置输出值 */

    value=dac_date;

    rt_dac_write(dac_dev, DAC_DEV_CHANNEL, value);
    rt_kprintf("the value is :%d \n", value);

    /* 转换为对应电压值 */
    vol = value * REFER_VOLTAGE / CONVERT_BITS;
    rt_kprintf("the voltage is :%d.%02d \n", vol / 100, vol % 100);

    /* 延时查看效果,关闭通道后无输出 */
   // rt_thread_mdelay(500);

    /* 关闭通道 */
   // ret = rt_dac_disable(dac_dev, DAC_DEV_CHANNEL);

    return ret;
}

static int dac2_vol_sample()
{
    rt_dac_device_t dac_dev;
    rt_uint32_t value, vol;
    rt_err_t ret = RT_EOK;

    /* 查找设备 */
    dac_dev = (rt_dac_device_t)rt_device_find(DAC_DEV_NAME);
    if (dac_dev == RT_NULL)
    {
        rt_kprintf("dac sample run failed! can't find %s device!\n", DAC_DEV_NAME);
        return RT_ERROR;
    }

    /* 打开通道 */
    ret = rt_dac_enable(dac_dev, DAC_DEV_CHANNEL2);

    /* 设置输出值 */

    value=dac_date2;

    rt_dac_write(dac_dev, DAC_DEV_CHANNEL2, value);
    rt_kprintf("the value2 is :%d \n", value);

    /* 转换为对应电压值 */
    vol = value * REFER_VOLTAGE / CONVERT_BITS;
    rt_kprintf("the voltage2 is :%d.%02d \n", vol / 100, vol % 100);

    /* 延时查看效果,关闭通道后无输出 */
   // rt_thread_mdelay(500);

    /* 关闭通道 */
   // ret = rt_dac_disable(dac_dev, DAC_DEV_CHANNEL2);

    return ret;
}


int dac1_write_distance_sample(void)
{
    rt_thread_t dac1_thread;

    dac1_thread = rt_thread_create("dac1",
                                   dac1_write_distance_entry,
                                   "pr_dac1",
                                   1024,
                                   RT_THREAD_PRIORITY_MAX / 2,
                                   20);
    if (dac1_thread != RT_NULL) {
        rt_thread_startup(dac1_thread);
    }

    return RT_EOK;
}

INIT_APP_EXPORT(dac1_write_distance_sample);

四、测试实验结果

打开dac输出线程,打印dac输出数据。INIT_APP_EXPORT(dac1_write_distance_sample);
RT-Thread 之 DAC设备驱动调试_第7张图片

五、注意事项

1)如果CubeMX配置后出现串口错误,需打开CubeMX,将串口进行初始化配置。
2)不仅要看输出的串口数据,更加需要通过万用表去测量输出IO口的具体电压值,双向验证代码。
3)STM32F103ZET6的两路DAC,并非有两个DAC,而是有两通道的DAC,不然使用的时候会报错,并且得不到想要的结果。

你可能感兴趣的:(rt-thread,studio系列教程,单片机,stm32,c语言)