上一篇从RecyclerView的源码牵出了测量和布局的核心逻辑都在dispatchLayoutStep系列方法中。这篇我们就分析下dispatchLayoutStep系列方法。
//布局的第一步; - 处理适配器更新 - 决定应该运行哪个动画 - 保存有关当前视图的信息 - 如有必
//要,运行预测布局并保存其信息
private void dispatchLayoutStep1() {
mState.assertLayoutStep(State.STEP_START);
fillRemainingScrollValues(mState);
mState.mIsMeasuring = false;
// 阻止外部requestLayout调用,上一篇说过
startInterceptRequestLayout();
mViewInfoStore.clear();
// 表示正在进行layout,上面说过
onEnterLayoutOrScroll();
// 处理适配器更新和动画标记
processAdapterUpdatesAndSetAnimationFlags();
saveFocusInfo();
mState.mTrackOldChangeHolders = mState.mRunSimpleAnimations && mItemsChanged;
mItemsAddedOrRemoved = mItemsChanged = false;
mState.mInPreLayout = mState.mRunPredictiveAnimations;
mState.mItemCount = mAdapter.getItemCount();
findMinMaxChildLayoutPositions(mMinMaxLayoutPositions);
if (mState.mRunSimpleAnimations) {
// 是否运行动画
。。。
}
if (mState.mRunPredictiveAnimations) {
// 是否运行预测性动画
。。。
} else {
clearOldPositions();
}
//恢复上面的拦截和条件判断
onExitLayoutOrScroll();
stopInterceptRequestLayout(false);
// 设置标记
mState.mLayoutStep = State.STEP_LAYOUT;
}
上面说到,dispatchLayoutStep1主要是存储一些UI数据。代码的注释已经很清楚了。
我们看到这个方法内部主要通过两个条件进行判断,一个是mRunSimpleAnimations,也就是是否运行动画。还有一个是mRunPredictiveAnimations,也就是是否进行预测性动画。
预测性动画会在以后专门讲动画的时候详解。
processAdapterUpdatesAndSetAnimationFlags方法内部主要处理适配器更新和处理动画标记。
private void processAdapterUpdatesAndSetAnimationFlags() {
。。。
boolean animationTypeSupported = mItemsAddedOrRemoved || mItemsChanged;
mState.mRunSimpleAnimations = mFirstLayoutComplete
&& mItemAnimator != null
&& (mDataSetHasChangedAfterLayout
|| animationTypeSupported
|| mLayout.mRequestedSimpleAnimations)
&& (!mDataSetHasChangedAfterLayout
|| mAdapter.hasStableIds());
mState.mRunPredictiveAnimations = mState.mRunSimpleAnimations
&& animationTypeSupported
&& !mDataSetHasChangedAfterLayout
&& predictiveItemAnimationsEnabled();
}
mRunSimpleAnimations的赋值
关注下dispatchLayoutStep1的 mState.mInPreLayout = mState.mRunPredictiveAnimations的赋值,他表示在运行预测性动画时,此时在preLayout阶段。后面分析LayoutManger会用到。这个值在正常的测量时时false,只有在预测性动画测量阶段才会时true,在讲LayoutManager时会看到这个值产生的影响。
分析完条件判断,我们看下dispatchLayoutStep1中mRunSimpleAnimations为true时怎么处理的。
int count = mChildHelper.getChildCount();
for (int i = 0; i < count; ++i) {
final ViewHolder holder = getChildViewHolderInt(mChildHelper.getChildAt(i));
if (holder.shouldIgnore() || (holder.isInvalid() && !mAdapter.hasStableIds())) {
continue;
}
final ItemHolderInfo animationInfo = mItemAnimator
.recordPreLayoutInformation(mState, holder,
ItemAnimator.buildAdapterChangeFlagsForAnimations(holder),
holder.getUnmodifiedPayloads());
mViewInfoStore.addToPreLayout(holder, animationInfo);
if (mState.mTrackOldChangeHolders && holder.isUpdated() && !holder.isRemoved()
&& !holder.shouldIgnore() && !holder.isInvalid()) {
long key = getChangedHolderKey(holder);
mViewInfoStore.addToOldChangeHolders(key, holder);
}
}
类ItemHolderInfo中封闭了对应ItemView的边界信息,left、top、right、bottom值。
对象mViewInfoStore的作用就是保存数据以供动画使用。
/**
* Keeps data about views to be used for animations
*/
final ViewInfoStore mViewInfoStore = new ViewInfoStore();
后面mViewInfoStore.addToPreLayout方法存储进入
void addToPreLayout(RecyclerView.ViewHolder holder, RecyclerView.ItemAnimator.ItemHolderInfo info) {
InfoRecord record = mLayoutHolderMap.get(holder);
if (record == null) {
record = InfoRecord.obtain();
mLayoutHolderMap.put(holder, record);
}
record.preInfo = info;
record.flags |= FLAG_PRE;
}
放到了mLayoutHolderMap中,完成了存储。最后mState.mLayoutStep = State.STEP_LAYOUT,标记完成了设置了dispatchLayoutStep1方法。
dispatchLayoutStep1到这里就结束了。主要做动画的准备工作,存储一下现有item的信息。
dispatchLayoutStep2是真正进行测量的地方
/**
* 第二个布局步骤,我们对最终状态的视图进行实际布局。 如有必要,此步骤可能会运行多次(例如测量)。
*/
private void dispatchLayoutStep2() {
//祖传拦截和标记状态
startInterceptRequestLayout();
onEnterLayoutOrScroll();
//断言判断
mState.assertLayoutStep(State.STEP_LAYOUT | State.STEP_ANIMATIONS);
mAdapterHelper.consumeUpdatesInOnePass();
mState.mItemCount = mAdapter.getItemCount();
mState.mDeletedInvisibleItemCountSincePreviousLayout = 0;
// Step 2: Run layout
mState.mInPreLayout = false;
mLayout.onLayoutChildren(mRecycler, mState);
mState.mStructureChanged = false;
mPendingSavedState = null;
// onLayoutChildren may have caused client code to disable item animations; re-check
mState.mRunSimpleAnimations = mState.mRunSimpleAnimations && mItemAnimator != null;
// 设置layout阶段状态
mState.mLayoutStep = State.STEP_ANIMATIONS;
onExitLayoutOrScroll();
stopInterceptRequestLayout(false);
}
看到dispatchLayoutStep2方法的主要工作是调用了mLayout.onLayoutChildren方法进行测量。LayoutManager的onLayoutChildren是一个空方法,系统提供的LayoutManager都实现了这个方法,下一篇这里我们着重分析下LinearLayoutManger的实现。这里实现了各个item的measure和layout。以支持RV的wrap_content。
最后设置 mState.mLayoutStep 为State.STEP_ANIMATIONS,标记已经执行完dispatchLayoutStep2步骤,需要执行dispatchLayoutStep3。
//布局的最后一步,我们保存关于动画视图的信息,触发动画并进行任何必要的清理。
private void dispatchLayoutStep3() {
mState.assertLayoutStep(State.STEP_ANIMATIONS);
startInterceptRequestLayout();
onEnterLayoutOrScroll();
//重制为标记位
mState.mLayoutStep = State.STEP_START;
if (mState.mRunSimpleAnimations) {
//执行动画
。。。
}
mLayout.removeAndRecycleScrapInt(mRecycler);
mState.mPreviousLayoutItemCount = mState.mItemCount;
mDataSetHasChangedAfterLayout = false;
mDispatchItemsChangedEvent = false;
mState.mRunSimpleAnimations = false;
mState.mRunPredictiveAnimations = false;
mLayout.mRequestedSimpleAnimations = false;
if (mRecycler.mChangedScrap != null) {
mRecycler.mChangedScrap.clear();
}
if (mLayout.mPrefetchMaxObservedInInitialPrefetch) {
// Initial prefetch has expanded cache, so reset until next prefetch.
// This prevents initial prefetches from expanding the cache permanently.
mLayout.mPrefetchMaxCountObserved = 0;
mLayout.mPrefetchMaxObservedInInitialPrefetch = false;
mRecycler.updateViewCacheSize();
}
mLayout.onLayoutCompleted(mState);
onExitLayoutOrScroll();
stopInterceptRequestLayout(false);
mViewInfoStore.clear();
if (didChildRangeChange(mMinMaxLayoutPositions[0], mMinMaxLayoutPositions[1])) {
dispatchOnScrolled(0, 0);
}
recoverFocusFromState();
resetFocusInfo();
}
dispatchLayoutStep3内部主要做了一些状态的重制,并清空一些数据。到了第三部应该拿第一步存储的数据进行动画执行了,执行动画的方法在mState.mRunSimpleAnimations判断的内部。以后讲动画我们会细致的讲解。
相信通过测绘流程上下篇的讲解,大家对RecyclerView在View的基础上的测绘流程,应该有一定认识了。最终具体的测量就在LayoutManager中了。
下一篇会介绍LayoutManager,主要分析LinearLayoutManager,这个我们比较常用,并着重介绍onLayoutChildren方法。