- 目前主流图像分类模型的详细对比分析
@comefly
闲聊linux运维服务器
以下是目前主流图像分类模型的详细对比分析,结合性能、架构特点及应用场景进行整理:一、主流模型架构分类与定量对比模型名称架构类型核心特点ImageNetTop-1准确率参数量(百万)计算效率典型应用场景ResNetCNN残差连接解决梯度消失,支持超深网络(如ResNet-152)76.1%25.6中等通用分类、目标检测ViTTransformer将图像分割为patches,用标准Transforme
- 汽车加气站操作工分类有几种
学视线123
其他
2025年汽车加气站操作工分类及专业要求一、按能源类型分类CNG操作工•专业范围:20MPa高压气体操作•特殊要求:需掌握压缩机群控技术LNG操作工•专业范围:-162℃低温储罐管理•特殊要求:BOG再液化系统操作资质氢气操作工•专业范围:70MPa高压加氢•特殊要求:氢脆防护专项培训LPG操作工•专业范围:丙烷/丁烷混合气体•特殊要求:钢瓶残液处理认证二、按岗位职能分类加注操作岗•核心技能:标准
- 访问 chls.pro/ssl 进不去?别慌!Charles 救星在此!
测试界的段子手
ssl网络协议网络
各位小伙伴们,有没有遇到过这样的尴尬情况:兴致勃勃地想用Charles抓包,结果发现访问chls.pro/ssl怎么都进不去?就像想吃火锅却发现煤气罐没气一样,瞬间感觉人生都灰暗了!别担心!作为一名资深(被迫)踩坑选手,我来拯救你们于水火之中!问题描述:当你信心满满地打开浏览器,输入chls.pro/ssl,期待着Charles证书的下载页面出现时,却发现页面一片空白,或者直接提示连接超时。内心O
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- Google Play上架审核问题解决指南:权限与功能声明篇
wzj_what_why_how
Android#Android——编译签名打包Android
这是《GooglePlayAndroid应用打包指南》的续篇。如果你还没看过基础的打包和上架流程,建议先阅读:GooglePlayAndroid应用打包指南相信很多Android开发者都有过这样的经历:应用打包完成,信心满满地提交到GooglePlay,结果没过多久就收到了审核被拒的邮件。别问我怎么知道的,问就是经验丰富…下面整理了几个GooglePlay审核中最容易踩坑的几个问题,适配设备为0,
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- FairyGUI 实现 Boss 双层血条动画
future1412
学习
涉及到一个问题的话先去了解前因后果,涉及到的UI框架,全部吃懂吃透。一:理解血条系统的组成1.boss血条一般包括:红色血条:表示当前血量,随伤害立即减少;白色血条(残影):慢慢减少,产生一种“缓冲”的受伤视觉效果;血条分段(如2条血表示不同阶段);血条消失/出现动画;血条附加信息:如Boss名字、阶段数、状态效果等。二:准备环境Unity+FairyGUI准备血条UI元素:使用两张图层叠加实现红
- 我与C语言二周目邂逅vlog—1.熟悉而又陌生-初识C语言
hope kc
c语言开发语言
如题,在下是一名大二学生,希望改过自新,重新学习C语言(同时也在学习数据结构,希望各位大佬多多指教)1.C语言的历史C语言最初作为Unix系统的开发工具而发明的。如今成为一种高级语言,可谓C生万物2.编译与链接C语言代码是放在.c为后缀的文件里,.c为后缀的文件称为源文件,.c本身就是文本文件,无法直接运行,所以要得到最终运行的可执行程序,中间要经过编译和链接两个过程。3.VS项目的创建打开VS时
- 第0章:开篇词 - 嘿,别怕,AI应用开发没那么神!
嘿,各位未来的AI大神们,我是阿威。在敲下这行字的时候,我猜你可能正坐在你的HermanMiller或者宜家电竞椅上,屏幕上还留着VSCode的残影,脑子里可能还在回响着产品经理那句“这个需求很简单”。你可能是一个身经百战的Web后端,也可能是一个像素眼的前端大师,或者是一个在移动端AppStore里摸爬滚打多年的老兵。我们都一样,是代码世界的“手艺人”,是数字世界的“建筑师”。我们相信逻辑,我们
- Python训练营打卡 Day50
预训练模型+CBAM模块知识点回顾:resnet结构解析CBAM放置位置的思考针对预训练模型的训练策略差异化学习率三阶段微调预训练模型+CBAM模块知识点回顾ResNet结构解析残差块:ResNet的核心是残差块,它通过残差连接解决了深层网络的梯度消失问题。残差块允许梯度直接传播到后面的层,从而使得网络能够训练得更深。网络结构:ResNet由多个残差块组成,每个残差块包含两个或三个卷积层,以及一个
- 【图像超分】论文复现:密集残差链接Transformer!DRCT的Pytorch源码复现,跑通超分源码,获得指标、模型复杂度、结果可视化,核心模块拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)pytorch深度学习超分辨率重建图像处理计算机视觉pythontransformer
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DRCT源码,获得与论文一致的PSNR/SSIM、Params、超分可视化结果,修正论文中FLOPs的计
- 典型的几种神经网络
Victor Zhong
AI框架神经网络人工智能深度学习
骨干网络CNN(卷积神经网络)RNN(循环神经网络)三级目录CNN(卷积神经网络)包括输入层、隐藏层、输出层:输入层一般为一张图片(w,h,d),输入层数据一般要做归一化处理;隐藏层包含特有的卷积层(卷积核有权重系数)、池化层(没有权重系数)、全连接层,还有残差块?和Inception模块?。;输出层:RNN(循环神经网络)单向的RNN示意图:三级目录
- 开发岗一干就是10年,中年危机又迷茫咋办?
非计算机专业毕业的我,能在开发岗位干十年,现在又成功转型到项目负责人,属实不易,一路走来充满了努力和机遇。作为一个奔四的人,在而立和不惑之间,我想写几条忠告给马上就要经历这些,和正在经历这些的人。以下内容写给普通人和普通岗位:1.你认为错误的方案同样会有正确的结果,甚至更好。《这就是马云》书中讲了一个马云的故事:在一次会议上,有员工问马云:“马总,如果您的决定,出现了明显的错误,谁来制衡您?”马云
- MySQL数据库DML语句总结(最全终极版)
山顶风景独好
数据库mysqladb
文章目录一、表记录操作-上1.1、DML概述1.2、插入记录二、表记录操作-下2.1、更新记录2.2、删除记录你好呀!我是山顶风景独好欢迎踏入我的博客世界,能与您在此邂逅,真是缘分使然!愿您在此停留的每一刻,都沐浴在轻松愉悦的氛围中。这里不仅有丰富的知识和趣味横生的内容等您来探索,更是一个自由交流的平台,期待您留下独特的思考与见解。让我们一起踏上这段探索与成长的旅程,携手挖掘更多可能,共同进步!✨
- 普通卸载只是表面功夫,Geek卸载神器了解一下。
明京
windows
01前言在Windows上,很多人习惯通过:•【控制面板】→卸载程序•或【设置】→应用→卸载你以为点击“卸载”按钮,软件就永远消失了吗?❌事实是:•注册表项还在•残留配置文件没删•相关服务还在后台运行•系统启动依然加载“幽灵程序”这些就是系统卡顿、空间被吃掉的罪魁祸首02正文一、初识GeekGeekUninstaller是一款轻量级、免费但功能强大的Windows程序卸载工具,主打“强力卸载+无残
- 新手秒懂!MCP协议架构全拆解:从运维血泪史到企业级安全实战 —— 3层组件深度剖析+原创代码改造,拒绝API包装器误区
码力金矿
pythonMCP人工智能架构运维安全apache数据分析数据挖掘人工智能
一、凌晨宕机之痛:为什么你的AI调度系统总崩溃?“智能客服半夜突然发疯,给用户狂发1000条促销短信!事后排查:函数调用权限失控+无审计追踪…”传统方案的三大致命伤:组件混乱:Agent/函数/服务边界模糊,错误难定位安全裸奔:敏感操作无权限控制(如直接执行rm-rf)扩展困难:每加新工具需重写对接逻辑今天用「MCP三层架构」一次性根治!二、架构秒懂图解:3大组件如何各司其职graphTBA[MC
- 当AI邂逅新能源:Java如何重构能源未来
当AI邂逅新能源:Java如何重构能源未来在阿联酋阿布扎比的沙漠深处,一座由AI驱动的“全景式数字指挥中心”正实时监控着2000公里外的海上油田。通过深度学习算法预测设备故障、优化钻井路径,这座由阿布扎比国家石油公司打造的智能中枢,每年减少100万吨碳排放,创造价值5亿美元。而在中国南方,全球首个大规模抽水蓄能AI数据分析平台,正让百年历史的电站群焕发新生——7座电站、34台机组实现90%人工巡检
- pythonflow_MLflow系列1:MLflow入门教程(Python)
weixin_39872334
pythonflow
这篇教程展示了如何:训练一个线性回归模型将训练代码打包成一个可复用可复现的模型格式将模型部署成一个简单的HTTP服务用于进行预测这篇教程使用的数据来自UCI的红酒质量数据集,主要用于根据红酒的PH值,酸度,残糖量等指标来评估红酒的质量。我们会用到什么?安装MLflow和scikit-learn,推荐两种安装方式:安装MLflow及其依赖:pipinstallmlflow[extras]分别安装ML
- YOLOv8 轴承缺陷检测 使用YOLOv8进行训练、评估和可视化预测结果 包含1440张图片的轴承缺陷检测数据集 YOLO格式或XML格式
OICQQ67658008
YOLOxml深度学习轴承缺陷数据检测算法人工智能
轴承缺陷检测4类1440张names:[‘aocao’,‘aoxian’,‘cashang’,‘huahen’]名称::[‘凹槽’,‘凹陷’,‘卡伤’,‘划痕’]共1440张,8:1:1比例划分train:1152张,val:144张,test:144张标注文件为YOLO适用的txt格式或xml格式。可以直接用于模型训练。YOLOv8轴承缺陷检测importosimporttorchfromIPy
- Python Day56
别勉.
python机器学习python开发语言
Task:1.假设检验基础知识a.原假设与备择假设b.P值、统计量、显著水平、置信区间2.白噪声a.白噪声的定义b.自相关性检验:ACF检验和Ljung-Box检验c.偏自相关性检验:PACF检验3.平稳性a.平稳性的定义b.单位根检验4.季节性检验a.ACF检验b.序列分解:趋势+季节性+残差记忆口诀:p越小,落在置信区间外,越拒绝原假设。1.假设检验基础知识a.原假设与备择假设原假设(Null
- 【题解】洛谷P1001 A+B Problem
炯炯目光
c++
写在前面第一篇博客,献给2020年的残夏。静听8月的热情与安宁,在竞赛中的时光如白驹过隙。也不惧未知的风雨,努力向着既往的通途。ACMACMACM的目标,希望能实现吧。同时,推荐一下我的个人博客,欢迎访问。https://www.cnblogs.com/jjmg/下面是页面编辑的测试。题目地址https://www.luogu.com.cn/problem/P1001题目描述输入两个整数a,ba,
- 流量压测,CDN跑量
JAVA拾贝
ddos压测攻击网络攻击模型
这里写自定义目录标题背景灵机一动平台部署总结背景自己经营了个网站,有一点收益,经常被竞争对手DDOS,客户流失,无奈只能上防御平台,气不过也找人去DDOS对方(不建议,费钱且违法),对方也上了高防CDN,于是一直陷入伤敌一千自损八百的循环~灵机一动常规的CDN套餐除了时间还有请求数和流量的限制,那如果可以一直刷对方流量岂不是,可以间接掏空对方钱包了?如是赶紧找了下有没有类似的平台~平台官网:Img
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- 【机器学习算法】XGBoost原理
一、基本内容基本内容:GBDT的基础上,在损失函数上加入树模型复杂度的正则项与GBDT一样,也是使用新的弱学习器拟合残差(当前模型负梯度,残差方向)GBDT损失函数Loss=∑i=1NL(yi,yit)Loss=\sum_{i=1}^{N}L(y_i,y_i^{t})Loss=i=1∑NL(yi,yit)XGboost损失函数Loss=∑i=1SL(yi,yit)+∑j=1NΩ(fj))Loss=
- 基于Transformer实现机器翻译
yyyyurina.
transformer机器翻译深度学习
目录一、前言1.1什么是Transformer?1.2Transfomer的基本结构1.2Transformer的重要组成部分1.2.1位置编码(PositionalEncode)1.2.2自注意力机制(Self-Attention)1.2.3多头注意力(Multi-HeadAttention)1.2.4位置感知前馈层(Position-wiseFFN)1.2.5残差连接与层归一化二、AutoDL
- 体育赛事大数据分析:AI模型对足球大小球预测的精度优化
东奔西走的小喇叭
人工智能数据分析机器学习
在足球赛事的大数据分析中,AI模型对“大小球”(总进球数是否高于/低于预设值,如2.5球)的预测优化是一个复杂但具有实际价值的课题。以下从技术实现、数据策略、模型优化及挑战四个维度展开分析:1.数据来源与特征工程核心数据源结构化比赛数据:历史进球数、射门/射正率、控球率、角球、任意球、红黄牌、伤停球员等。球队动态特征:近期5-10场进攻/防守效率、主客场表现、战术风格(如高位逼抢或防守反击)。球员
- 数字海洋生命可视化系统(代码邂逅深蓝)
四段数学方程正演绎着一场跨越代码与生命的奇妙共生。这组“数字海洋生命可视化系统”以Python为浪,用算法作礁,让小水母、蚰蜒、虫子与大水母在黑色幕布上绽放出超越自然的流光。指尖轻点“小水母”,10000个数据点便化作剔透的伞状体,触须随π/20的时间步长摇曳,5倍余弦函数编织的波纹在彩虹色与深海蓝间切换——当q值驱动的光点跃动时,仿佛真有月光穿透海面,让每个像素都成为发光水母的神经突触。而“蚰蜒
- python数据分析张俊红_Python数据分析实战基础 | 初识Pandas
weixin_39678531
python数据分析张俊红
这是Python数据分析实战基础的第一篇内容,主要是和Pandas来个简单的邂逅。已经熟练掌握Pandas的同学,可以加快手速滑动浏览或者直接略过本文。01重要的前言这段时间和一些做数据分析的同学闲聊,我发现数据分析技能入门阶段存在一个普遍性的问题,很多凭着兴趣入坑的同学,都能够很快熟悉Python基础语法,然后不约而同的一头扎进《利用Python进行数据分析》这本经典之中,硬着头皮啃完之后,好像
- XGBoost算法原理及Python实现
法号清水
算法python开发语言
一、概述 XGBoost是一种基于梯度提升框架的机器学习算法,它通过迭代地训练一系列决策树来构建模型。核心思想是通过不断地在已有模型的基础上,拟合负梯度方向的残差(真实值与预测值的差)来构建新的弱学习器,达到逐步优化模型的目的。 XGBoost在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交