- 机器学习-----决策树
多巴胺与内啡肽.
机器学习机器学习决策树人工智能
文章目录1、概念2.决策树的构建过程2.1特征选择2.2树的生成2.3树的剪枝3.决策树的优缺点4.决策树的应用4.1分类任务4.2回归任务4.3集成学习代码示例总结1、概念1.1决策树是什么决策树是通过对样本的训练,建立出分类规则,并对新样本进行预测,属于有监督学习。根节点:最上面的节点。叶子节点:能直接看到结果的节点。非叶子节点:位于中间的节点。1.2决策树的类型分类树:用于分类任务,叶节点代
- C/C++ R-Tree原理及源代码
猿来如此yyy
C/C++算法详解及源码r-treec语言c++开发语言算法数据结构
R树是一种用于高维空间数据的索引结构,它是由AntoninGuttman于1984年提出的。R树旨在提高对多维数据进行范围查询的性能。它被广泛应用于空间数据库中。R树的核心思想是将数据划分为不相交的矩形区域,并逐层构建一个树结构。每个非叶子节点都是一个矩形,它覆盖了它的所有子节点。每个叶子节点都是一个数据对象与其坐标范围的组合。通过这种方式,R树能够将相邻的数据对象聚集在一起,从而减少对数据的搜索
- 二叉树的所有路径(leetcode 257
JohnFF
leetcodelinux算法
leetcode系列文章目录一、核心操作二、外层配合操作三、核心模式代码总结使用递归法一、核心操作1.判断是不是叶子节点(该节点的左右子节点都为空2.收获该路径(将储存的节点一个一个拿出来,用->连接if(cur->left==nullptr&&cur->right==nullptr){stringspath;for(inti=0;i";}spath+=to_string(path[path.si
- MySQL的覆盖索引
.晚安.
mysql数据库
MySQL的覆盖索引前言当一个索引包含了查询所需的全部字段时,就可以提高查询效率,这样的索引又被称之为覆盖索引。以MySQL常见的三种存储引擎为例:InnoDB、MyISAM、Memory,对于覆盖索引提高查询效率的方式均不同,下面让我们分别讲讲:InnoDB在InnoDB中,主键索引的叶子节点存储完整的数据行,称为聚簇索引,而唯一索引、普通索引、联合索引的叶子节点只存储索引字段和主键值,称之为二
- 剑指offer笔试刷题(1):树专题
weixin_35837473
1.输入两棵二叉树A,B,判断B是不是A的子结构。(ps:我们约定空树不是任意一个树的子结构)遍历A找到与B根结点相同的位置,子结构是从根结点到叶子节点相同。思路1:1.先考虑特殊情况,如果指针为空则错误。2定义一个子函数,功能是判断是否是子结构,然后主函数从根结点到叶子结点遍历。3return递归的布尔型值,如果最后return的是&&则递归终止条件是true关系不大,只要有一个是false,r
- MySQL 技术浅析(聚簇索引、UndoLog、RedoLog、MVCC)
代码没写完哪有脸睡觉
mysql数据库
MySQL核心技术深度解析一、聚簇索引与非聚簇索引1.聚簇索引结构存储方式InnoDB中,聚簇索引的叶子节点直接存储完整数据行,数据按主键值物理排序存储。主键索引即数据文件,非叶子节点存储主键范围和子节点指针数据行与主键索引绑定,主键顺序决定磁盘存储顺序示例存储结构B+树结构:根节点→[id20;--索引设计为(name,age)2.事务控制建议控制事务粒度:单个事务执行时间<1秒批量操作分批次提
- XGBoost算法深度解析:从原理到实践
彩旗工作室
人工智能算法机器学习人工智能
一、算法起源与核心思想XGBoost(eXtremeGradientBoosting)由陈天奇于2014年提出,是梯度提升决策树(GBDT)的优化版本。其核心思想通过迭代集成弱学习器(CART树)逐步修正预测误差,并引入正则化机制控制模型复杂度,防止过拟合。与GBDT相比,XGBoost在目标函数中融合了损失函数(衡量预测误差)和正则化项(约束树结构与叶子权重),形成结构风险最小化框架,从而提升泛
- 代码随想录|二叉树|10二叉树的最小深度
Paper Clouds
算法数据结构c++leetcode决策树
leetcode:111.二叉树的最小深度-力扣(LeetCode)题目给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。说明:叶子节点是指没有子节点的节点。示例:给定二叉树[3,9,20,null,null,15,7],返回最小深度2思路同样是前序方法和后序方法,后序遍历的话就是求高度。递归三部曲(1)参数和返回值输入二叉树的根节点,返回int类型的高度(2
- 【leetcode】113. 路径总和 II(Java)
待别三日
Leetcodeleetcodejava算法
题目描述题目链接113.路径总和II题解经典回溯。终止条件:当遍历到叶子节点,并且此时路径的值==targerSum,此时收集当前的path。处理逻辑:我们遍历到一个节点时,可以把targetSum-root.val作为下一层的targetSum,所以当我们找到叶子节点的时候,并且root.val==targetSum,就可以收集了。完整代码classSolution{List>res=newAr
- 华为OD E卷 #18 生成哈夫曼树
时光回响
华为OD机试E卷华为od算法数据结构
题目给定长度为n的无序的数字数组,每个数字代表二叉树的叶子节点的权值,数字数组的值均大于等于1。请完成一个函数,根据输入的数字数组,生成哈夫曼树,并将哈夫曼树按照中序遍历输出。为了保证输出的二叉树中序遍历结果统一,增加限制:二叉树节点中,左节点权值小于右节点权值,根节点权值为左右节点权值之和。当左右节点权值相同时,左子树高度小于等于右子树高度。输入5515403010输出4010030601530
- 决策树的核心思想
code 旭
AI人工智能学习决策树算法机器学习
一、决策树的核心思想本质:通过特征判断对数据集递归划分,形成树形结构。目标:生成一组“若-则”规则,使数据划分到叶子节点时尽可能纯净。关键流程:特征选择:选择最佳分裂特征(如信息增益最大)。节点分裂:根据特征取值划分子节点。停止条件:节点样本纯度过高或样本数过少时终止。二、数学公式与理论1.信息熵(InformationEntropy)衡量数据集的混乱程度:H(D)=−∑k=1Kpklog2pk
- 刷题前必学!二叉树!用JavaScript学数据结构与算法
JavaScript算法与数据结构-HowieCong务必要熟悉JavaScript使用再来学!一、树是什么?数据结构中的树,对于现实世界中的树简化——树根抽象为“根节点”,树枝抽象为“边”,树枝的两个端点抽象为“结点”,树叶抽象为“叶子结点”计算机中的树如下:二、树的重点树的层次计算规则:根结点所在的那一层为第一层,其子节点为第二层,以此类推结点和树的高度计算规则:叶子结点高度为1,每向上一层
- MySQL精选面试题
米二
mysql数据库oracle
文章目录1.sql优化2.数据库优化3.悲观锁和乐观锁4.共享锁与排他锁5.索引的目的是什么?6.B+Tree对比BTree的优点:6.1磁盘读写代价更低6.2查询速度更稳定且能存更多索引6.3B+树叶子节点两两相连增快区间访问7.聚簇索引和非聚簇索引的区别8.forupdate9.间隙锁GapLocks10.临键锁Next-KeyLocks11.MVCC是什么?1.sql优化对查询进行优化,应尽
- 【忍者算法】深入探索:二叉树的最大深度之旅|LeetCode 104 二叉树的最大深度
忍者算法
忍者算法LeetCode题解秘籍算法leetcode链表数据结构职场和发展面试
深入探索:二叉树的最大深度之旅|LeetCode104二叉树的最大深度生命的高度:理解树的深度想象一棵树,它从地底向天空生长。树的深度不仅仅是枝干的长度,更是生命的垂直延伸。在二叉树的世界里,深度代表了从根节点到最远叶子节点的最长路径。这是一种从根本到极限的探索旅程。深度的本质:递归的诗与逻辑二叉树的最大深度(LeetCode第104题)本质上是一个递归问题,它蕴含着令人惊叹的优雅逻辑。想象你正站
- 决策树(Decision Tree):机器学习中的经典算法
Jason_Orton
机器学习算法决策树随机森林人工智能
1.什么是决策树?决策树(DecisionTree)是一种基于树形结构的机器学习算法,适用于分类和回归任务。其核心思想是通过一系列的规则判断,将数据集不断划分,最终形成一棵树状结构,从而实现预测目标。在决策树中,每个内部节点表示一个特征,每个分支代表一个特征的取值,每个叶子节点对应一个类别或预测值。决策树的目标是构建一棵能够有效区分不同类别的树,并在测试数据上保持较好的泛化能力。2.决策树的工作原
- mysql面试知识点
mysql
leftjoin和innerjoin区别leftjoin在右表没有匹配项的时候,会将左表拼接上右表,右表的字段以null填充。innerjoin在右表没有匹配项的时候,该结果不显示innoDB默认的存储引擎支持事务、支持物理外键天生支持行锁、手动支持表锁使用聚簇索引(索引和数据在同一个文件)索引概念一种排好序,能够提升查询性能的数据结构分类聚簇索引(主键索引)索引和行数据都在一个叶子节点上非聚簇索
- C++【STL---set&map底层红黑树(RBTree)】
疯狂的代M夫
c++数据结构c++
1、什么是红黑树?红黑树是搜索二叉树的一种,它不像AVL树那样使用平衡因子严格的限制树的高度。它是通过节点的颜色来实现:树的最长路径不超过左端路径的二倍,从而接近平衡的;红黑树的特点:1、根节点必须是黑色的;2、每条路径上的黑色节点的数量必须是相等的;3、不能出现连续相同的两个红色节点;4、节点的颜色不是红色就是个黑色;5、每条路径都是以空节点进行结束的,所谓的路径包含叶子节点到空节点的那一段;2
- 数据库与存储优化
时光不负追梦人
数据库mybatisjava
一、MySQL深度优化索引优化B+树索引结构结构特点:平衡多路搜索树,所有数据存储在叶子节点,非叶子节点仅存键值和指针。叶子节点通过双向链表连接,支持范围查询高效遍历。优势:减少磁盘IO(高扇出,3~4层可存储千万级数据)。适合范围查询(如WHEREidBETWEEN100AND200)。覆盖索引定义:索引包含查询所需的所有字段,无需回表。示例:--创建覆盖索引CREATEINDEXidx_cov
- 打卡代码随想录第15天:LeetCode 110.平衡二叉树 257. 二叉树的所有路径 404.左叶子之和
jingjingjing1111
leetcode
学习资料:代码随想录文中含LLM生成内容110.平衡二叉树力扣题目链接思路:逐层返回当前节点的最大高度,比较各节点的左右孩子高度后续方法遍历,因为‘中’是比较环节,要在左右之后/***Definitionforabinarytreenode.*structTreeNode{*intval;*TreeNode*left;*TreeNode*right;*TreeNode():val(0),left(
- 蓝桥杯例题练习(简单)--绘制四叶风车
Nanhuiyu
蓝桥杯pythonpycharm
#利用turtle绘制四叶风车,要求:风车叶子颜色填充为红黄蓝绿,边长100##思路:由于绘制的是四叶风车,因此在绘制时可能存在重复代码段,可以考虑将其嵌入循环之中以节省代码量和人力##基础准备:##turtle.setheading(角度)/turtle.seth(角度),设置画笔朝向,初始朝向为正右,朝向改变为逆时针方向变化##turtle.shape(形状),可以改变画笔的形状##turtl
- 【力扣Hot100】543.二叉树的直径
Data跳动
力扣Hot100二叉树算法数据结构javaleetcode
题目:二叉树的直径分析:还记不记得如何求二叉树的最大深度,那么如何求穿过根节点的直径,很显然答案就是将左子树的最大深度+右子树的最大深度;但是题目中要求最大直径,也就是说最大直径路径不一定是穿过根节点的,所以要设置一个变量max,用来记录所有的子树的直径,然后更新最大值。思路:设置一个全局变量max;对root进行求最大深度,调用下maxDeepth方法;越过叶子节点,返回0;计算左子树最大深度l
- 深度神经网络——决策树的实现与剪枝
知来者逆
人工智能dnn决策树人工智能神经网络深度学习机器学习
概述决策树是一种有用的机器学习算法,用于回归和分类任务。“决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。这是决策树的快速定义,但让我们深入了解决策树的工作原理。更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。决策树的结构决策树的
- 【每日八股】MySQL篇(三):索引(上)
YGGP
后端mysql数据库
目录MySQL为什么使用B+树来做索引,它的优势是什么?特性和定义B+树和B树的对比拓展:既然B+树相较于B树优势如此之大,为什么nosql的MongoDB底层仍采用B树而不是B+树?使用B+树做索引的优势补充:为什么说B+树的插入和删除效率高?B+树的冗余结点是如何形成的?它们的作用是什么?冗余结点是如何帮助提高插入和删除效率的?冗余结点指的是叶子节点冗余还是用做索引的非叶子节点冗余?为什么说B
- 通俗易懂的分类算法之决策树详解
clownAdam
分类决策树数据挖掘算法
通俗易懂的分类算法之决策树详解1.什么是决策树?决策树是一种像树一样的结构,用来帮助我们对数据进行分类或预测。它的每个节点代表一个问题或判断条件,每个分支代表一个可能的答案,最后的叶子节点就是最终的分类结果。举个例子:假设你要判断一个水果是苹果还是香蕉,你可以问一些问题:它是红色的吗?如果是→可能是苹果。如果不是→继续问下一个问题。它是长条形的吗?如果是→可能是香蕉。如果不是→可能是其他水果。这个
- 算法基础课——第三章 搜索与图论(一)
华北理工大学ACM协会
算法竞赛——算法基础课图论算法c++
第三章搜索与图论(一)DFS与BFS的区别与联系都可以对整个问题空间进行遍历;搜索的结构都像树一样;但搜索的顺序是不同的;深度优先搜索是尽可能往深里搜,当搜到叶子节点的时候回溯;DFSDFSDFS就像一个非常执着的人,它会不断往深里搜,搜到头后回去的时候也还不是直接回到头,而是边回去边看能不能继续往前走,只有确定当前点所有路都走不了的时候,才会往回退一步;下图中的树代表整个问题空间,节点上的数字代
- MySQL中OR操作导致索引失效的深度解析与技术优化方案
阿豆学编程
Mysqlmysql数据库
一、索引机制与查询优化基础B+树索引的结构特性MySQL采用B+树作为核心索引结构,其平衡多路搜索树的特性保证了O(logN)的查询效率。B+树具有以下显著特征:所有叶子节点形成有序链表,支持高效范围查询非叶子节点仅存储索引键值,不保存数据指针数据记录按主键顺序存储在聚簇索引的叶子节点每个节点存储的键值数量由页大小和键值长度决定以InnoDB引擎为例,其默认页大小为16KB。假设索引键为INT类型
- 编程小白冲Kaggle每日打卡(17)--kaggle学堂:<机器学习简介>随机森林
AZmax01
编程小白冲Kaggle每日打卡机器学习随机森林人工智能
Kaggle官方课程链接:RandomForests本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。RandomForests使用更复杂的机器学习算法。介绍决策树给你留下了一个艰难的决定。一棵有很多叶子的深树会被过度拟合,因为每一个预测都来自它叶子上少数房子的历史数据。但是,叶子很少的浅树表现不佳,因为它无法在原始数据中捕捉到尽可能多的区别。即使是当今最复杂的建模技术也面临着欠拟合和过拟
- 关系型数据库的技术思路
编程之升级打怪
数据库
一、网络协议需要根据TCP协议设计一个客户端和服务器之间的命令响应协议。1、服务端回复声明2、客户端发送登录包3、服务端返回登录结果4、登录成功后进入命令阶段,否则退出。二、每个连接用一个线程服务器为每个客户端连接开启一个线程。三、需要文件的随机读写需要方便的跳转到存储文件的指针。四、数据结构用B+树1、非叶子节点存放很多个关键字每个关键字递增排列。2、叶子节点存放关键字对应记录的文件存放指针。五
- 常见后端开发面试问题(持续更新)
零戚
面试职场和发展
mysql为什么采用B+树作为索引?首先,B+树相比于B树来说非叶子节点上只有索引没有数据,数据都在叶子节点,就使其非常适合进行范围查询。因为对于Mysql这种数量级非常大的数据来说可以减少磁盘的I/O次数,同时其在叶子节点添加的有指针,可以更加快速的进行查找。平均查找时间为log(n)为什么B树不可以呢?因为B树的非叶子节点上面既有指针也有数据,从而导致一次搜索时装入到内存的值并不多,而海量的数
- LeetCode 111. 二叉树的最小深度 java题解
奔跑的废柴
LeetCodeleetcodejava算法
https://leetcode.cn/problems/minimum-depth-of-binary-tree/description/注意,跟二叉树的最大深度求解完全不同。//当一个左子树为空,右不为空,这时并不是最低点//因为叶子结点需要左右孩子都为空,当前节点有右孩子,不符合叶子结点。//同理,当一个右子树为空,左不为空,这时并不是最低点。//节点左右都不为空,节点左右都为空intres
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,