import threading
import time
def task():
time.sleep(1)
print("当前线程:", threading.current_thread().name)
if __name__ == '__main__':
for _ in range(5):
sub_thread = threading.Thread(target=task)
sub_thread.start()
执行结果:
当前线程: Thread-1
当前线程: Thread-2
当前线程: Thread-4
当前线程: Thread-5
当前线程: Thread-3
说明:
假如我们现在创建一个子线程,这个子线程执行完大概需要2.5秒钟,现在让主线程执行1秒钟就退出程序,查看一下执行结果,示例代码如下:
import threading
import time
# 测试主线程是否会等待子线程执行完成以后程序再退出
def show_info():
for i in range(5):
print("test:", i)
time.sleep(0.5)
if __name__ == '__main__':
sub_thread = threading.Thread(target=show_info)
sub_thread.start()
# 主线程延时1秒
time.sleep(1)
print("over")
执行结果:
test: 0
test: 1
over
test: 2
test: 3
test: 4
说明:
通过上面代码的执行结果,我们可以得知: 主线程会等待所有的子线程执行结束再结束
假如我们就让主线程执行1秒钟,子线程就销毁不再执行,那怎么办呢?
守护主线程:
设置守护主线程有两种方式:
设置守护主线程的示例代码:
import threading
import time
# 测试主线程是否会等待子线程执行完成以后程序再退出
def show_info():
for i in range(5):
print("test:", i)
time.sleep(0.5)
if __name__ == '__main__':
# 创建子线程守护主线程
# daemon=True 守护主线程
# 守护主线程方式1
sub_thread = threading.Thread(target=show_info, daemon=True)
# 设置成为守护主线程,主线程退出后子线程直接销毁不再执行子线程的代码
# 守护主线程方式2
# sub_thread.setDaemon(True)
sub_thread.start()
# 主线程延时1秒
time.sleep(1)
print("over")
执行结果:
test: 0
test: 1
over
需求:
import threading
import time
# 定义全局变量
my_list = list()
# 写入数据任务
def write_data():
for i in range(5):
my_list.append(i)
time.sleep(0.1)
print("write_data:", my_list)
# 读取数据任务
def read_data():
print("read_data:", my_list)
if __name__ == '__main__':
# 创建写入数据的线程
write_thread = threading.Thread(target=write_data)
# 创建读取数据的线程
read_thread = threading.Thread(target=read_data)
write_thread.start()
# 延时
# time.sleep(1)
# 主线程等待写入线程执行完成以后代码在继续往下执行
write_thread.join()
print("开始读取数据啦")
read_thread.start()
执行结果:
write_data: [0, 1, 2, 3, 4]
开始读取数据啦
read_data: [0, 1, 2, 3, 4]
需求:
import threading
# 定义全局变量
g_num = 0
# 循环一次给全局变量加1
def sum_num1():
for i in range(1000000):
global g_num
g_num += 1
print("sum1:", g_num)
# 循环一次给全局变量加1
def sum_num2():
for i in range(1000000):
global g_num
g_num += 1
print("sum2:", g_num)
if __name__ == '__main__':
# 创建两个线程
first_thread = threading.Thread(target=sum_num1)
second_thread = threading.Thread(target=sum_num2)
# 启动线程
first_thread.start()
# 启动线程
second_thread.start()
执行结果:
sum1: 1210949
sum2: 1496035
注意点:
多线程同时对全局变量操作数据发生了错误
错误分析:
两个线程first_thread和second_thread都要对全局变量g_num(默认是0)进行加1运算,但是由于是多线程同时操作,有可能出现下面情况:
全局变量数据错误的解决办法:
线程同步: 保证同一时刻只能有一个线程去操作全局变量 同步: 就是协同步调,按预定的先后次序进行运行。如:你说完,我再说, 好比现实生活中的对讲机
线程同步的方式:
线程等待的示例代码:
import threading
# 定义全局变量
g_num = 0
# 循环1000000次每次给全局变量加1
def sum_num1():
for i in range(1000000):
global g_num
g_num += 1
print("sum1:", g_num)
# 循环1000000次每次给全局变量加1
def sum_num2():
for i in range(1000000):
global g_num
g_num += 1
print("sum2:", g_num)
if __name__ == '__main__':
# 创建两个线程
first_thread = threading.Thread(target=sum_num1)
second_thread = threading.Thread(target=sum_num2)
# 启动线程
first_thread.start()
# 主线程等待第一个线程执行完成以后代码再继续执行,让其执行第二个线程
# 线程同步: 一个任务执行完成以后另外一个任务才能执行,同一个时刻只有一个任务在执行
first_thread.join()
# 启动线程
second_thread.start()
执行结果:
sum1: 1000000
sum2: 2000000