提示:这里可以添加本文要记录的大概内容:
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。
提示:以下是本篇文章正文内容,下面案例可供参考
Init 容器是一种特殊容器,在 Pod 内的应用容器启动之前运行。Init 容器可以包括一些应用镜像中不存在的实用工具和安装脚本。
你可以在 Pod 的描述(配置)中应用容器的 containers 数组平行的位置指定 Init 容器。
Pod 能够具有多个容器,应用运行在容器里面,但是它也可能有一个或多个先于应用容器启动的 Init 容器。
Init 容器与普通的容器非常像,除了如下两点:
如果 Pod 的 Init 容器失败,Kubernetes 会不断地重启该 Pod,直到 Init 容器成功为止。但是,如果 Pod 对应的 restartPolicy 为 Never,并且 Pod 的 Init 容器失败, 则 Kubernetes 会将整个 Pod 状态设置为失败。pod也不会重新启动。
指定容器为 Init 容器,在 PodSpec 中添加 initContainers 字段, 该字段以 Container 类型对象数组的形式组织,和应用的 containers 数组同级相邻。
Init 容器的状态在 status.initContainerStatuses 字段中以容器状态数组的格式返回(类似 status.containerStatuses 字段)。
Init 容器支持应用容器的全部字段和特性,包括资源限制、数据卷和安全设置。 然而,Init 容器对资源请求和限制的处理稍有不同,在下面资源节有说明。
同时 Init 容器不支持 lifecycle、livenessProbe、readinessProbe 和 startupProbe, 因为它们必须在 Pod 就绪之前运行完成。
如果为一个 Pod 指定了多个 Init 容器,这些容器会按顺序逐个运行。 每个 Init 容器必须运行成功,下一个才能够运行。当所有的 Init 容器运行完成时, Kubernetes 才会为 Pod 初始化应用容器并像平常一样运行。
因为 Init 容器具有与应用程序容器分离的单独镜像,所以它们的启动相关代码具有如下优势:
下面是一些如何使用 Init 容器的用途:
等待一个 Service 完成创建,通过类似如下 Shell 命令:
for i in {1..100}; do sleep 1; if dig myservice; then exit 0; fi; done; exit 1
注册这个 Pod 到远程服务器,通过在命令中调用 API,类似如下:
curl -X POST http://$MANAGEMENT_SERVICE_HOST:$MANAGEMENT_SERVICE_PORT/register -d 'instance=$()&ip=$()'
在启动应用容器之前等一段时间,使用类似 sleep 60 的命令。
sleep 60
克隆 Git 仓库到数据卷。
将配置值放到配置文件中,运行模板工具为主应用容器动态地生成配置文件。例如,在配置文件中存放 POD_IP 值,并使用 Jinja 生成主应用配置文件。
下面的例子定义了一个具有 2 个 Init 容器的简单 Pod。 第一个等待 myservice 启动, 第二个等待 mydb 启动。 一旦这两个 Init 容器都启动完成,Pod 将启动 spec 节中的应用容器。
apiVersion: v1
kind: Pod
metadata:
name: myapp-pod
labels:
app.kubernetes.io/name: MyApp
spec:
containers:
- name: myapp-container
image: busybox:1.28
command: ['sh', '-c', 'echo The app is running! && sleep 3600']
initContainers:
- name: init-myservice
image: busybox:1.28
command: ['sh', '-c', "until nslookup myservice.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local; do echo waiting for myservice; sleep 2; done"]
- name: init-mydb
image: busybox:1.28
command: ['sh', '-c', "until nslookup mydb.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local; do echo waiting for mydb; sleep 2; done"]
下面的 YAML 文件展示了 mydb 和 myservice 两个 Service:
kind: Service
apiVersion: v1
metadata:
name: myservice
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9376
---
kind: Service
apiVersion: v1
metadata:
name: mydb
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9377
你通过运行下面的命令启动 Pod:
kubectl apply -f myapp.yaml
输出类似于:
pod/myapp-pod created
使用下面的命令检查其状态:
kubectl get -f myapp.yaml
输出类似于:
NAME READY STATUS RESTARTS AGE
myapp-pod 0/1 Init:0/2 0 6m
或者查看更多详细信息:
kubectl describe -f myapp.yaml
输出类似于:
Name: myapp-pod
Namespace: default
[...]
Labels: app.kubernetes.io/name=MyApp
Status: Pending
[...]
Init Containers:
init-myservice:
[...]
State: Running
[...]
init-mydb:
[...]
State: Waiting
Reason: PodInitializing
Ready: False
[...]
Containers:
myapp-container:
[...]
State: Waiting
Reason: PodInitializing
Ready: False
[...]
Events:
FirstSeen LastSeen Count From SubObjectPath Type Reason Message
--------- -------- ----- ---- ------------- -------- ------ -------
16s 16s 1 {default-scheduler } Normal Scheduled Successfully assigned myapp-pod to 172.17.4.201
16s 16s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Pulling pulling image "busybox"
13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Pulled Successfully pulled image "busybox"
13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Created Created container init-myservice
13s 13s 1 {kubelet 172.17.4.201} spec.initContainers{init-myservice} Normal Started Started container init-myservice
如需查看 Pod 内 Init 容器的日志,请执行:
kubectl logs myapp-pod -c init-myservice # 查看第一个 Init 容器
kubectl logs myapp-pod -c init-mydb # 查看第二个 Init 容器
在这一刻,Init 容器将会等待至发现名称为 mydb 和 myservice 的 Service。
创建这些 Service 的配置文件:
---
apiVersion: v1
kind: Service
metadata:
name: myservice
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9376
---
apiVersion: v1
kind: Service
metadata:
name: mydb
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9377
创建 mydb 和 myservice 服务的命令:
kubectl apply -f services.yaml
输出类似于:
service/myservice created
service/mydb created
这样你将能看到这些 Init 容器执行完毕,随后 my-app 的 Pod 进入 Running 状态:
kubectl get -f myapp.yaml
输出类似于:
NAME READY STATUS RESTARTS AGE
myapp-pod 1/1 Running 0 9m
在 Pod 启动过程中,每个 Init 容器会在网络和数据卷初始化之后按顺序启动。 kubelet 运行依据 Init 容器在 Pod 配置中的出现顺序依次运行之。
如果由于运行时或失败退出,将导致容器启动失败,它会根据 Pod 的 restartPolicy 指定的策略进行重试。然而,如果 Pod 的 restartPolicy 设置为 Always,Init 容器失败时会使用 RestartPolicy 策略。
在所有的 Init 容器没有成功之前,Pod 将不会变成 Ready 状态。Init 容器的端口将不会在 Service 中进行聚集。 正在初始化中的 Pod 处于 Pending 状态,但应该会将 Initializing 状态设置为 true。
如果 Pod 重启,所有 Init 容器必须重新执行。
对 Init 容器 spec 的修改被限制在容器 image 字段,修改其他字段都不会生效。更改 Init 容器的 image 字段,等价于重启该 Pod。
因为 Init 容器可能会被重启、重试或者重新执行,所以 Init 容器的代码应该是幂等的。特别地当写到 EmptyDirs 文件中的代码,应该对输出文件可能已经存在做好准备。
Init 容器具有应用容器的所有字段。除了 readinessProbe,因为 Init 容器无法定义不同于完成(completion)的就绪(readiness)之外的其他状态。这会在验证过程中强制执行。
在 Pod 上使用 activeDeadlineSeconds,在容器上使用 livenessProbe,这样能够避免 Init 容器一直失败。 这就为 Init 容器活跃设置了一个期限。
在 Pod 中的每个 app 和 Init 容器的名称必须唯一;与任何其它容器共享同一个名称,会在验证时抛出错误。
为 Init 容器指定顺序和执行逻辑,下面对资源使用的规则将被应用:
基于有效 Pod 请求和限制来应用配额和限制。Pod 级别的 cgroups 是基于有效 Pod 请求和限制,和调度器相同。
Pod 重启,会导致 Init 容器重新执行,主要有如下几个原因:
Pause 容器,又叫 Infra 容器
在 kubelet 的配置中有这样一个参数:
KUBELET_POD_INFRA_CONTAINER=--pod-infra-container-image=registry.access.redhat.com/rhel7/pod-infrastructure:latest
上面是 openshift 中的配置参数,kubernetes 中默认的配置参数是:
KUBELET_POD_INFRA_CONTAINER=--pod-infra-container-image=gcr.io/google_containers/pause-amd64:3.0
Pause 容器,是可以自己来定义,官方使用的 gcr.io/google_containers/pause-amd64:3.0 容器的代码见 Github,使用 C 语言编写。
像 Pod 这样一个东西,本身是一个逻辑概念。那在机器上,它究竟是怎么实现的呢?这就是我们要解释的一个问题。
既然说 Pod 要解决这个问题,核心就在于如何让一个 Pod 里的多个容器之间最高效的共享某些资源和数据。
因为容器之间原本是被 Linux Namespace 和 cgroups 隔开的,所以现在实际要解决的是怎么去打破这个隔离,然后共享某些事情和某些信息。这就是 Pod 的设计要解决的核心问题所在。
所以说具体的解法分为两个部分:网络和存储。
Pause 容器就是为解决 Pod 中的网络问题而生的。
Pod 里的多个容器怎么去共享网络?下面是个例子:
比如说现在有一个 Pod,其中包含了一个容器 A 和一个容器 B,它们两个就要共享 Network Namespace。在 Kubernetes 里的解法是这样的:它会在每个 Pod 里,额外起一个 Infra container 小容器来共享整个 Pod 的 Network Namespace。
Infra container 是一个非常小的镜像,大概 700KB 左右,是一个 C 语言写的、永远处于 “暂停” 状态的容器。由于有了这样一个 Infra container 之后,其他所有容器都会通过 Join Namespace 的方式加入到 Infra container 的 Network Namespace 中。
所以说一个 Pod 里面的所有容器,它们看到的网络视图是完全一样的。即:它们看到的网络设备、IP 地址、Mac 地址等等,跟网络相关的信息,其实全是一份,这一份都来自于 Pod 第一次创建的这个 Infra container。这就是 Pod 解决网络共享的一个解法。
在 Pod 里面,一定有一个 IP 地址,是这个 Pod 的 Network Namespace 对应的地址,也是这个 Infra container 的 IP 地址。所以大家看到的都是一份,而其他所有网络资源,都是一个 Pod 一份,并且被 Pod 中的所有容器共享。这就是 Pod 的网络实现方式。
由于需要有一个相当于说中间的容器存在,所以整个 Pod 里面,必然是 Infra container 第一个启动。并且整个 Pod 的生命周期是等同于 Infra container 的生命周期的,与容器 A 和 B 是无关的。这也是为什么在 Kubernetes 里面,它是允许去单独更新 Pod 里的某一个镜像的,即:做这个操作,整个 Pod 不会重建,也不会重启,这是非常重要的一个设计。
我们检查 node 节点的时候会发现每个 node 上都运行了很多的 pause 容器,例如如下。
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
2c7d50f1a7be docker.io/jimmysong/heapster-grafana-amd64@sha256:d663759b3de86cf62e64a43b021f133c383e8f7b0dc2bdd78115bc95db371c9a "/run.sh" 3 hours ago Up 3 hours k8s_grafana_monitoring-influxdb-grafana-v4-5697c6b59-76zqs_kube-system_5788a3c5-29c0-11e8-9e88-525400005732_0
5df93dea877a docker.io/jimmysong/heapster-influxdb-amd64@sha256:a217008b68cb49e8f038c4eeb6029261f02adca81d8eae8c5c01d030361274b8 "influxd --config ..." 3 hours ago Up 3 hours k8s_influxdb_monitoring-influxdb-grafana-v4-5697c6b59-76zqs_kube-system_5788a3c5-29c0-11e8-9e88-525400005732_0
9cec6c0ef583 jimmysong/pause-amd64:3.0 "/pause" 3 hours ago Up 3 hours k8s_POD_monitoring-influxdb-grafana-v4-5697c6b59-76zqs_kube-system_5788a3c5-29c0-11e8-9e88-525400005732_0
54d06e30a4c7 docker.io/jimmysong/kubernetes-dashboard-amd64@sha256:668710d034c4209f8fa9a342db6d8be72b6cb5f1f3f696cee2379b8512330be4 "/dashboard --inse..." 3 hours ago Up 3 hours k8s_kubernetes-dashboard_kubernetes-dashboard-65486f5fdf-lshl7_kube-system_27c414a1-29c0-11e8-9e88-525400005732_0
5a5ef33b0d58 jimmysong/pause-amd64:3.0 "/pause" 3 hours ago Up 3 hours k8s_POD_kubernetes-dashboard-65486f5fdf-lshl7_kube-system_27c414a1-29c0-11e8-9e88-525400005732_0
kubernetes 中的 pause 容器主要为每个业务容器提供以下功能:
这篇文章做出了详细的说明,pause 容器的作用可以从这个例子中看出,首先见下图:
我们首先在节点上运行一个 pause 容器。
docker run -d --name pause -p 8880:80 --ipc=shareable jimmysong/pause-amd64:3.0
然后再运行一个 nginx 容器,nginx 将为 localhost:2368 创建一个代理。
$ cat <>> nginx.conf
error_log stderr;
events { worker_connections 1024; }
http {
access_log /dev/stdout combined;
server {
listen 80 default_server;
server_name example.com www.example.com;
location / {
proxy_pass http://127.0.0.1:2368;
}
}
}
EOF
$ docker run -d --name nginx -v `pwd`/nginx.conf:/etc/nginx/nginx.conf --net=container:pause --ipc=container:pause --pid=container:pause nginx
然后再为 ghost 创建一个应用容器,这是一款博客软件。
$ docker run -d --name ghost --net=container:pause --ipc=container:pause --pid=container:pause ghost
现在访问 http://localhost:8880/ 就可以看到 ghost 博客的界面了。
pause 容器将内部的 80 端口映射到宿主机的 8880 端口,pause 容器在宿主机上设置好了网络 namespace 后,nginx 容器加入到该网络 namespace 中,我们看到 nginx 容器启动的时候指定了 --net=container:pause,ghost 容器同样加入到了该网络 namespace 中,这样三个容器就共享了网络,互相之间就可以使用 localhost 直接通信,–ipc=contianer:pause --pid=container:pause 就是三个容器处于同一个 namespace 中,init 进程为 pause,这时我们进入到 ghost 容器中查看进程情况。
# ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 1024 4 ? Ss 13:49 0:00 /pause
root 5 0.0 0.1 32432 5736 ? Ss 13:51 0:00 nginx: master p
systemd+ 9 0.0 0.0 32980 3304 ? S 13:51 0:00 nginx: worker p
node 10 0.3 2.0 1254200 83788 ? Ssl 13:53 0:03 node current/in
root 79 0.1 0.0 4336 812 pts/0 Ss 14:09 0:00 sh
root 87 0.0 0.0 17500 2080 pts/0 R+ 14:10 0:00 ps aux
在 ghost 容器中同时可以看到 pause 和 nginx 容器的进程,并且 pause 容器的 PID 是 1。而在 Kubernetes 中容器的 PID=1 的进程即为容器本身的业务进程。