摘要NMR技术的迅速发展,使其在药学领域中从新药的化学结构的预测扩展到对体液、组织中药物及其代谢物的分析。本文综述了近年发展的几种NMR模式在体内药物分析中的应用。与其它分析方法相比,NMR技术在体内药物分析中具有简便、无损伤、动态等特点。并且指出了该技术在应用中存在的问题和解决办法,展望了应用前景。
关键词NMR技术体内药物分析代谢物
体内药物分析是对生物体内药物及其代谢物的分析。由于体内样品有这样一些特点:药物及其代谢物在大量的体液中浓度很低;存在着内源性干扰物质;取样量受限制;样品具有不重复性。因此体内药物分析对分析方法的选择有较高的要求。近20年来,NMR技术的发展使其在药物领域中的应用由鉴定体外药物的化学结构扩展到对体液、组织中药物及其代谢物的分析。与其它分析方法相比,NMR方法具有:
(1)简便性无需对样品进行繁杂的提取或衍生化,减少了由此带来的误差;
(2)无损伤性对取样量有限的生物样品经NMR分析后还可用于其它处理,甚至可对生物整体进行无损伤分析;
(3)连续性NMR可对整体生物系统进行动态监测而不扰乱生物体内的各种平衡,实现药物的在体分析;
(4)高分辨性 NMR谱线为Hz量级,
能提供分子水平的结构信息;
(5)多目标性无需进行分析条件摸索,可在同一物理条件下检测药物及其多种代谢物。
由于NMR技术具有以上特点,而使其在体内药物分析中的应用日益增多。
把NMR引进体内药物分析时遇到灵敏度低的问题,所以增强NMR的灵敏度一直是NMR发展中被关注的焦点之一。70年代后,多种脉冲技术如:傅立叶变换技术(PTF)、自旋回波脉冲序列、不灵敏核极化转移增益(INEPT)、无畸变极化转移增益(DEPT)、双量子谱等新技术的发展,高磁场、计算机处理系统的应用,使NMR灵敏度提高了若干个数量级。目前体内药物分析中常用的是高磁场强度的脉冲(300~800Hz)傅立叶变换NMR谱仪。
在体内药物分析中,NMR技术可用于药物及其代谢物的结构鉴定、代谢途径归属、定量分析以及药物与内源性物质相互作用的研究。研究手段主要是检测药物及其代谢物的核磁矩核素,如1H、13C、19F、31P等。所用生物样品可为传统的血浆、尿液、唾液、胆汁、切除的组织、灌流器官液等,也可为整体生物系统。本文主要介绍几种NMR模式在体内药物分析中的应用。
11H-NMR
目前各国药典在药物分析方法中均收载了有关1H-NMR法。美国药典中亚硝酸异戊酯及其吸入剂,英国药典中庆大霉素C皆用1H-NMR进行质量控制。但在体内药物分析中使用1H-NMR遇到了难题:体液主要成分是水,由于水的质子浓度远高于待测物浓度,使待测信号难以检出。80年代提出了水峰压制技术、冷冻干燥技术,使上述问题得以克服,1H-NMR已广泛用于体内药物分析。已报道的有:氨苄青霉素、布洛芬、硝苯地平、硫氮卓酮、阿司匹林、美西律等的体内样品分析。
H-NMR主要用于含有孤立甲基、乙基、乙酰基的药物及其代谢物的分析。检测限为10μmol/ml,样品处理一般经冷冻干燥后重水溶解即可。Connor等[1]用高分辨1H-NMR(400MHz)研究了大鼠静注羟氨苄青霉素后24h内尿样中药物的代谢情况。实验用自旋回波技术,消除内源性物质的干扰,增强了测定的灵敏度。尿样中共振信号在0.5~1.7ppm范围内的两组峰为青霉素结构噻唑环C2上的一对偕甲基信号,分辨清晰,测得主要代谢物为5R,6R和5S,6R青霉素与二酮哌嗪。该项研究首次发现了羟氨苄青霉素与内源性碳酸氢盐存在着相互作用。Jaroszewski等用水峰压制H-NMR快速测定了人尿样中枸橼酸碳酰胺嗪(DEC)的量。尿样用10%的D2O混合即可。以DEC上弛豫时间为1s的N-三乙基为检测基团,检测限低于10μg/ml,精密度、准确度良好,实验中未检测出DEC的N-氧化物,药物基本以原型消除。Keire等[3]用自旋回波脉冲序列1H-NMR(500MHz)研究了含硫基药物(RSH)青霉胺和卡托普利代谢过程中与血浆白蛋白(ALBBSC)的相互作用。最初青霉胺(PSH)的血浆样品谱显示1.562ppm和1.464ppm尖锐的两组单峰信号为PSH的两个甲基信号,12小时后血浆样品谱两组甲基信号被显著削弱,且1.562ppm处信号被代谢生成的双硫化物(PSSP)和药物-半胱氨酸(PSSC)复合物覆盖。卡托普利和血浆白蛋白的作用与青霉胺相似,只是更为复杂。药物与血浆蛋白的结合直接影响药物在体内的效用。Maschke[4]用1H-NMR快速检测尿样中的三甲胺来诊断fish-odour综合征。Ko-dama[5]用1H-NMR确认了治疗肝豆状核变性的三乙烯羟化四甲胺(TRIEN)的N-乙酰化代谢物,药物TRIEN在体内易与铜、铁、锌离子结合使活性降低。
219F-NMR
F-NMR在体内药物分析中可检测浓度高于10μmol/ml、化学位移范围在-20ppm~50ppm的含氟药物及其代谢物。对于单氟原子药物谱图中每一组峰即代表一种含氟物质。19F-NMR对传统生物样品中药物的研究已有许多报道,如尿样中氟氯西林代谢研究;尿样、肝脏、肿瘤中5-氟尿嘧啶(5-FU)代谢及5-FU灌流心脏的心脏毒性研究;尿样中氟比洛芬代谢途径归属等。Tan-don等[6]用19F-NMR对小鼠腹腔注射抗病毒药物三氟胸苷(F3TdR)后的尿样、血浆、肝脏进行分析,检测出三种代谢物:5-三氟胸腺嘧啶(F3T)(12.02ppm)、5-三氟甲基-5,6-二氢胸腺嘧啶(DHF3T)(8.19ppm)和5-三氟甲基-5,6-双羟基胸腺嘧啶(DOHF3T)(-0.53ppm)。其中后两种代谢物为首次检测,这就为F3TdR的体内过程提供了进一步的解释。
近年来NMR谱技术发展到对整体生物系统进行体内药物分布、代谢监测。由于内源性含氟物质的浓度极低,背景干扰小,使19F-NMR优于其它磁核谱技术而首先应用于整体生物分析。Murphy等[7]用质子去偶及NOE增益 F-NMR监测接受化疗病人的肝脏中5-FU及其代谢物(FBAL)。Campbell等[8]利用NMR无损伤特性及表面线圈技术,测定了不同剂量抗菌素3-氟甲基青霉素V衍生物在活体SD大鼠体内的药物浓度。将静脉注药后的麻醉鼠置于表面线圈中,用19F-NMR测定鼠膀胱内尿样及胸内药物浓度。Jynpe等[9]用19F-NMR分析了给药后24h内抗菌素氟罗沙星在正常人肝脏及肌肉中的分布。上述研究为无损伤测定生物活体内药物提供了例证,且为药代动力学研究提供了一种动态测定研究的方法。
313C-NMR和31P-NMR
C核天然丰度低,其谱峰强度仅为质子峰的1/63,因而13C-NMR灵敏度远低于氢谱。NMR的迅速发展将信号累加平均(CAT)、质子噪声去偶、偏共振去偶、PFT、NOE、DEPT等新技术与 C-NMR结合,使C-NMR也能用于体内药物分析。C-NMR一大特点为化学位移范围很宽(约300ppm),相当于氢谱化学位移范围的20倍。因此不同化学环境的13C共振峰重叠机会甚少,分辨率优于氢谱,实践中常将二者互补使用。已报道过用13C-NMR研究布洛芬[10]、雷尼替丁枸橼酸铋[11]、脱氧青蒿素[12]的体内过程。Ogiso等[13]用13C-NMR探讨了脂肪酸对普萘洛尔透皮吸收的影响。实验结果表明:与月桂酸酰胺及甲酯化合物相比,月桂酸对普萘洛尔透皮吸收的增强作用显著。普萘洛尔制剂中加入月桂酸后,血浆中普萘洛尔浓度明显提高。Copeland等[14]用13C-NMR和H-NMR共同确认了免疫抑制剂环孢霉素G的两种代谢途径:羟基化和去甲基化。其代谢物药理活性均低于原型药。
含31P的药物较少,因此31P-NMR在体内药物分析中应用不多。已有过对环磷酰胺(CP)代谢研究的有关报道。体内的酶活性,药物的水合作用及合用地塞米松皆影响CP的分布[15]。此外Bishop等[16]用31P-NMR研究了醚酯类抗肿瘤药物十六烷基磷酰胆盐(HPC)在小鼠肝脏中的代谢。结果表明:HPC在体内被磷脂酶D分解代谢,酶的作用位点在烷基磷酯和胆盐之间。
N M R技术在体内药物分析中的应用_62医药论文投稿网_药学论文在线投稿_医药论文范文