数据结构与算法之美学习笔记:39 | 回溯算法:从电影《蝴蝶效应》中学习回溯算法的核心思想

目录

  • 前言
  • 如何理解“回溯算法”?
  • 两个回溯算法的经典应用
  • 内容小结

前言

数据结构与算法之美学习笔记:39 | 回溯算法:从电影《蝴蝶效应》中学习回溯算法的核心思想_第1张图片
本节课程思维导图:
数据结构与算法之美学习笔记:39 | 回溯算法:从电影《蝴蝶效应》中学习回溯算法的核心思想_第2张图片
我们在前面深度优先搜索算法利用的是回溯算法思想。这个算法思想非常简单,但是应用却非常广泛。它除了用来指导像深度优先搜索这种经典的算法设计之外,还可以用在很多实际的软件开发场景中,比如正则表达式匹配、编译原理中的语法分析等。
除此之外,很多经典的数学问题都可以用回溯算法解决,比如数独、八皇后、0-1 背包、图的着色、旅行商问题、全排列等等。既然应用如此广泛,我们今天就来学习一下这个算法思想,看看它是如何指导我们解决问题的。

如何理解“回溯算法”?

在我们的一生中,会遇到很多重要的岔路口。人的一生就是不断在岔路口作出选择的过程。如果人生可以量化,那如何才能在岔路口做出最正确的选择,让自己的人生“最优”呢?
我们可以借助贪心算法,在每次面对岔路口的时候,都做出看起来最优的选择,期望这一组选择可以使得我们的人生达到“最优”。但是,贪心算法并不一定能得到最优解。那有没有什么办法能得到最优解呢?2004 年上映了一部非常著名的电影《蝴蝶效应》,主人公给我们作出了回答。当然,这只是科幻电影,我们的人生是无法倒退的,但是这其中蕴含的思想其实就是回溯算法。
笼统地讲,回溯算法很多时候都应用在“搜索”这类问题上。不过这里说的搜索,并不是狭义的指我们前面讲过的图的搜索算法,而是在一组可能的解中,搜索满足期望的解。
回溯的处理思想,有点类似枚举搜索。我们枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。每个阶段,我们都会面对一个岔路口,我们先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。
我举一个经典的回溯例子,八皇后问题。
我们有一个 8x8 的棋盘,希望往里放 8 个棋子(皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。你可以看我画的图,第一幅图是满足条件的一种方法,第二幅图是不满足条件的。八皇后问题就是期望找到所有满足这种要求的放棋子方式。
数据结构与算法之美学习笔记:39 | 回溯算法:从电影《蝴蝶效应》中学习回溯算法的核心思想_第3张图片
我们把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,我们不停地检查当前放法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种放法,继续尝试。

回溯算法非常适合用递归代码实现,代码如下:

int[] result = new int[8];//全局或成员变量,下标表示行,值表示queen存储在哪一列
public void cal8queens(int row) { // 调用方式:cal8queens(0);
  if (row == 8) { // 8个棋子都放置好了,打印结果
    printQueens(result);
    return; // 8行棋子都放好了,已经没法再往下递归了,所以就return
  }
  for (int column = 0; column < 8; ++column) { // 每一行都有8中放法
    if (isOk(row, column)) { // 有些放法不满足要求
      result[row] = column; // 第row行的棋子放到了column列
      cal8queens(row+1); // 考察下一行
    }
  }
}

private boolean isOk(int row, int column) {//判断row行column列放置是否合适
  int leftup = column - 1, rightup = column + 1;
  for (int i = row-1; i >= 0; --i) { // 逐行往上考察每一行
    if (result[i] == column) return false; // 第i行的column列有棋子吗?
    if (leftup >= 0) { // 考察左上对角线:第i行leftup列有棋子吗?
      if (result[i] == leftup) return false;
    }
    if (rightup < 8) { // 考察右上对角线:第i行rightup列有棋子吗?
      if (result[i] == rightup) return false;
    }
    --leftup; ++rightup;
  }
  return true;
}

private void printQueens(int[] result) { // 打印出一个二维矩阵
  for (int row = 0; row < 8; ++row) {
    for (int column = 0; column < 8; ++column) {
      if (result[row] == column) System.out.print("Q ");
      else System.out.print("* ");
    }
    System.out.println();
  }
  System.out.println();
}

两个回溯算法的经典应用

  1. .0-1 背包
    0-1 背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,不过还有一种简单但没有那么高效的解法,那就是今天讲的回溯算法。我们先来看下,如何用回溯法解决这个问题。
    0-1 背包问题有很多变体,我这里介绍一种比较基础的。我们有一个背包,背包总的承载重量是 Wkg。现在我们有 n 个物品,每个物品的重量不等,并且不可分割。我们现在期望选择几件物品,装载到背包中。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?
    实际上,背包问题我们在贪心算法那一节,已经讲过一个了,不过那里讲的物品是可以分割的,我可以装某个物品的一部分到背包里面。今天讲的这个背包问题,物品是不可分割的,要么装要么不装,所以叫 0-1 背包问题。显然,这个问题已经无法通过贪心算法来解决了。我们现在来看看,用回溯算法如何来解决。
    对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于 n 个物品来说,总的装法就有 2 n 2^n 2n种,去掉总重量超过 Wkg 的,从剩下的装法中选择总重量最接近 Wkg 的。不过,我们如何才能不重复地穷举出这 2 n 2^n 2n 种装法呢?
    这里就可以用回溯的方法。我们可以把物品依次排列,整个问题就分解为了 n 个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。
    这里还稍微用到了一点搜索剪枝的技巧,就是当发现已经选择的物品的重量超过 Wkg 之后,我们就停止继续探测剩下的物品。
public int maxW = Integer.MIN_VALUE; //存储背包中物品总重量的最大值
// cw表示当前已经装进去的物品的重量和;i表示考察到哪个物品了;
// w背包重量;items表示每个物品的重量;n表示物品个数
// 假设背包可承受重量100,物品个数10,物品重量存储在数组a中,那可以这样调用函数:
// f(0, 0, a, 10, 100)
public void f(int i, int cw, int[] items, int n, int w) {
  if (cw == w || i == n) { // cw==w表示装满了;i==n表示已经考察完所有的物品
    if (cw > maxW) maxW = cw;
    return;
  }
  f(i+1, cw, items, n, w);
  if (cw + items[i] <= w) {// 已经超过可以背包承受的重量的时候,就不要再装了
    f(i+1,cw + items[i], items, n, w);
  }
}
  1. 正则表达式
    我们再来看另外一个例子,正则表达式匹配。实际上,正则表达式里最重要的一种算法思想就是回溯。
    正则表达式中,最重要的就是通配符,通配符结合在一起,可以表达非常丰富的语义。为了方便讲解,我假设正则表达式中只包含“”和“?”这两种通配符,并且对这两个通配符的语义稍微做些改变,其中,“”匹配任意多个(大于等于 0 个)任意字符,“?”匹配零个或者一个任意字符。基于以上背景假设,我们看下,如何用回溯算法,判断一个给定的文本,能否跟给定的正则表达式匹配?
    我们依次考察正则表达式中的每个字符,当是非通配符时,我们就直接跟文本的字符进行匹配,如果相同,则继续往下处理;如果不同,则回溯。如果遇到特殊字符的时候,我们就有多种处理方式了,也就是所谓的岔路口,比如“*”有多种匹配方案,可以匹配任意个文本串中的字符,我们就先随意的选择一种匹配方案,然后继续考察剩下的字符。如果中途发现无法继续匹配下去了,我们就回到这个岔路口,重新选择一种匹配方案,然后再继续匹配剩下的字符。
public class Pattern {
  private boolean matched = false;
  private char[] pattern; // 正则表达式
  private int plen; // 正则表达式长度

  public Pattern(char[] pattern, int plen) {
    this.pattern = pattern;
    this.plen = plen;
  }

  public boolean match(char[] text, int tlen) { // 文本串及长度
    matched = false;
    rmatch(0, 0, text, tlen);
    return matched;
  }

  private void rmatch(int ti, int pj, char[] text, int tlen) {
    if (matched) return; // 如果已经匹配了,就不要继续递归了
    if (pj == plen) { // 正则表达式到结尾了
      if (ti == tlen) matched = true; // 文本串也到结尾了
      return;
    }
    if (pattern[pj] == '*') { // *匹配任意个字符
      for (int k = 0; k <= tlen-ti; ++k) {
        rmatch(ti+k, pj+1, text, tlen);
      }
    } else if (pattern[pj] == '?') { // ?匹配0个或者1个字符
      rmatch(ti, pj+1, text, tlen);
      rmatch(ti+1, pj+1, text, tlen);
    } else if (ti < tlen && pattern[pj] == text[ti]) { // 纯字符匹配才行
      rmatch(ti+1, pj+1, text, tlen);
    }
  }
}

内容小结

回溯算法的思想非常简单,大部分情况下,都是用来解决广义的搜索问题,也就是,从一组可能的解中,选择出一个满足要求的解。回溯算法非常适合用递归来实现,在实现的过程中,剪枝操作是提高回溯效率的一种技巧。利用剪枝,我们并不需要穷举搜索所有的情况,从而提高搜索效率。
尽管回溯算法的原理非常简单,但是却可以解决很多问题,比如我们开头提到的深度优先搜索、八皇后、0-1 背包问题、图的着色、旅行商问题、数独、全排列、正则表达式匹配等等。如果感兴趣的话,你可以自己搜索研究一下,最好还能用代码实现一下。如果这几个问题都能实现的话,你基本就掌握了回溯算法。

你可能感兴趣的:(数据结构与算法之美学习笔记,算法,数据结构)