@article{li2018densefuse,
title={DenseFuse: A fusion approach to infrared and visible images},
author={Li, Hui and Wu, Xiao-Jun},
journal={IEEE Transactions on Image Processing},
volume={28},
number={5},
pages={2614–2623},
year={2018},
publisher={IEEE}
}
论文级别:SCI A1
影响因子:10.6
[论文下载地址]
在编码器中使用了密集连接来提取特征,使用解码器得到融合图像。
Image fusion, deep learning, dense block,infrared image, visible image.
图像融合,深度学习,密集块,红外图像,可见光图像
使用AE+密集块实现VIF.
融合策略:L1范式+softmax
参考链接
[什么是图像融合?(一看就通,通俗易懂)]
损失函数=结构相似性损失+像素损失
O和I分别代表输出和输入图像,像素损失是输出O和输入I的欧几里得距离。
结构性损失如下:
SSIM(·)表示结构相似度运算。在训练阶段,λ分别设置为1、10、100和1000。
在此图中, ϕ i m \phi_i^m ϕim代表特征图,活动水平映射 C ^ i \hat C_i C^i可以由L1范式和基于块的平均算子计算得出。
初始活动水平映射 C i C_i Ci为:
r决定了块的大小,本文作者设置为1.
-MS-COCO 的灰度图作为训练输入图像,256×256
图像融合数据集链接
[图像融合常用数据集整理]
参考资料
✨✨✨强烈推荐必看博客 [图像融合定量指标分析]
参考资料
[图像融合论文baseline及其网络模型]
更多实验结果及分析可以查看原文:
[论文下载地址]
[DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair]
[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
[IFCNN: A general image fusion framework based on convolutional neural network]
[(PMGI) Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity]
[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
[DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion]
[FusionGAN: A generative adversarial network for infrared and visible image fusion]
[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
[U2Fusion: A Unified Unsupervised Image Fusion Network]
综述[Visible and Infrared Image Fusion Using Deep Learning]
[图像融合论文baseline及其网络模型]
[3D目标检测综述:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]
[CVPR2023、ICCV2023论文题目汇总及词频统计]
✨[图像融合论文及代码整理最全大合集]
✨[图像融合常用数据集整理]
如有疑问可联系:[email protected];
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~