二进制中补码Complement

计算机在执行有负数参与的计算时必须用补码了。原因是计算机内部只有加法器,没有减法器,换言之,计算机只能进行加法运算,不能进行减法运算,所以,在计算减法运算时,需要通过转换成加上“减数相反数”的形式进行运算,因此计算机中引入了补码运算。

    1. 原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1]原 = 0000 0001
[-1]原 = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

[1111 1111 , 0111 1111]

[-127 , 127]

    1. 反码的表示方法是:
      正数的反码是其本身
      负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

    1. 补码的表示方法是:
      正数的补码就是其本身
      负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反(第一个是符号位) = [11111111]补

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

优势:
二进制的补码的便利体现在,所有的加法运算可以使用同一种电路完成。
还是以-8作为例子。假定有两种表示方法。一种是直觉表示法,即10001000;另一种是2的补码表示法,即11111000。请问哪一种表示法在加法运算中更方便?随便写一个计算式,16 + (-8) = ?16的二进制表示是 00010000,所以用直觉表示法,加法就要写成:
 00010000
+10001000原码形式-8
---------
 10011000
可以看到,如果按照正常的加法规则,就会得到10011000的结果,转成十进制就是-24。显然,这是错误的答案。也就是说,在这种情况下,正常的加法规则不适用于正数与负数的加法,因此必须制定两套运算规则,一套用于正数加正数,还有一套用于正数加负数。从电路上说,就是必须为加法运算做两种电路。所以用原码表示负数是不行的。
现在,再来看二进制的补码表示法。
 00010000
+11111000补码形式-8
---------
100001000
可以看到,按照正常的加法规则,得到的结果是100001000。注意,这是一个9位的二进制数。我们已经假定这是一台8位机,因此最高的第9位是一个溢出位,会被自动舍去。所以,结果就变成了00001000,转成十进制正好是8,也就是16 + (-8) 的正确答案。这说明了,2的补码表示法可以将加法运算规则,扩展到整个整数集,从而用一套电路就可以实现全部整数的加法。

你可能感兴趣的:(二进制中补码Complement)