【数据结构】什么是二叉树?

个人主页:修修修也

所属专栏:数据结构

⚙️操作环境:Visual Studio 2022


目录

二叉树的定义

二叉树的特点

特殊二叉树

二叉树的性质

二叉树的存储结构

二叉树的遍历

前序遍历

中序遍历

后序遍历

层序遍历

结语


二叉树的定义

二叉树(Binary Tree)是n(n≥0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两颗互不相交的,分别称为根结点的左子树和右子树的二叉树组成.

 二叉树逻辑结构如下图所示:

【数据结构】什么是二叉树?_第1张图片


二叉树的特点

二叉树的特点有:

  • 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点.注意不是只有两颗子树,而是最多有.没有子树或者有一颗子树都是可以的.
  • 左子树和右子树是有顺序的,次序不能任意颠倒.
  • 即使树中某个结点只有一棵子树,也要区分它是左子树还是右子树.下图中树1和树2是同一颗树,但它们却是不同的二叉树:【数据结构】什么是二叉树?_第2张图片

二叉树具有五种基本形态:

  1. 空二叉树.
  2. 只有一个根结点.
  3. 根结点只有左子树.
  4. 根结点只有右子树.
  5. 根结点既有左子树又有右子树.

只有三个结点的二叉树,有几种形态?

答案是有以下5种形态:

【数据结构】什么是二叉树?_第3张图片


特殊二叉树

  • 斜树

        所有的结点都只有左子树的二叉树叫左斜树.所有结点都是只有右子树的二叉树叫右斜树.这两者统称为斜树.上图中的树2就是左斜树,树3就是右斜树.

斜树每一层只有一个结点,结点的个数与二叉树的深度相同.

  • 满二叉树

        在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树.

如下图所示,该树就是一颗满二叉树:【数据结构】什么是二叉树?_第4张图片

注意,单是每个结点都存在左右子树,不能算是满二叉树,还必须要所有的叶子都在同一层上,这就做到了整棵树的平衡.

因此,满二叉树的特点有:

  1. 叶子只能出现在最下一层.出现在其他层就不可能达成平衡.
  2. 非叶子节点的度一定是2.
  3. 在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多.
  • 完全二叉树

        对一颗具有n个结点的二叉树按层序编号,如果编号为i(1≤i≤n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这颗二叉树称为完全二叉树,如下图所示:

【数据结构】什么是二叉树?_第5张图片

完全二叉树的特点有:

  1. 叶子结点只能出现在最下两层.
  2. 最下层的叶子一定集中在左部连续位置.
  3. 倒数二层,若有叶子结点,一定都在右部连续位置.
  4. 如果结点度为1,则该结点只有左孩子,即不存在只有右子树的情况.
  5. 同样结点数的二叉树,完全二叉树的深度最小.

二叉树的性质

性质1:

        在二叉树的第i层上至多有2^{i-1}个结点(i≥1).


推导如下:

【数据结构】什么是二叉树?_第6张图片

性质2:

        深度为k的二叉树至多有2^{k}-1个结点(k≥1).


推导如下:

【数据结构】什么是二叉树?_第7张图片

性质3:
        对任何一颗二叉树T,如果其终端结点数为n_{0},度为2的结点数为n_{2},则n_{0}=n_{2}+1.


终端结点数其实就是叶子节点数,一颗二叉树,只会存在度为0,度为1,度为2的结点,我们假设度为1的节点数为n_{1},则树T结点总数n=n_0+n_1+n_2.

性质4:

        具有n个结点的完全二叉树的深度为\left \lfloor log_{2}n \right \rfloor+1  , (\left \lfloor x \right \rfloor表示不大于x的最大整数).


我们由满二叉树的定义可知,深度为k的满二叉树的结点数n一定是2^k-1.因为这是最多的结点个数.那么对于n=2^k-1倒推可得满二叉树的深度数为k=log_2(n+1).

而对于完全二叉树而言,它的节点数一定少于等于同样深度数的满二叉树的结点数2^k-1,但一定多于2^{k-1}-1.即满足2^{k-1}-1< n\leqslant 2^k-1.易推导得k=\left \lfloor log_2n \right \rfloor+1.

性质5:

        如果对一颗有n个结点的完全二叉树(其深度为\left \lfloor log_2n \right \rfloor+1)的结点按层序编号(从第1层到第\left \lfloor log_2n \right \rfloor+1层,每层从左到右),对任一结点i(1≤i≤n)有:

  1. 如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是结点\left \lfloor \frac{i}{2} \right \rfloor.
  2. 如果2*i>n,则结点i无左孩子(结点i为叶子结点);否则其左孩子是结点2*i.
  3. 如果2*i+1>n,则结点i无右孩子;否则其右孩子是结点2*i+1.

二叉树的存储结构

  • 顺序存储结构

        二叉树的顺序存储结构就是用一维数组存储二叉树中的结点,并且结点的存储位置,也就是数组的下标要能体现结点之间的逻辑关系.

先来看看完全二叉树的顺序存储,一颗完全二叉树如下图:

【数据结构】什么是二叉树?_第8张图片

将这颗二叉树存到数组中,相应的下标对应其同样的位置:

【数据结构】什么是二叉树?_第9张图片

但如果遇到树中不存在的结点,我们也可在顺序结构中存入"^"或空,来表示该结点不存在:

【数据结构】什么是二叉树?_第10张图片

这种顺序存储结构仅适用于完全二叉树.因为,在最坏的情况下,一个深度为k且只有k个结点的单支树(即树中不存在度为2的结点)却需要长度为2^{k}-1的一维数组:

【数据结构】什么是二叉树?_第11张图片


  • 二叉链表

        因为二叉树每个结点最多有两个孩子,所以为它的结点设计一个数据域和两个指针域,分别指向两个孩子,我们称这样的链表叫做二叉链表.

结点结构图如下:

【数据结构】什么是二叉树?_第12张图片

二叉链表结构定义代码如下:

typedef struct BiTNode
{
    TElemType data;         //数据域
    struct BiTNode*left;    //左孩子指针域
    struct BiTNode*right;   //右孩子指针域
}BiTNode;

二叉树的遍历

二叉树的遍历(traversing binary tree)是指从根节点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且只访问一次.

前序遍历

        前序遍历的规则是:若二叉树为空,则空操作返回,否则先访问根节点,然后前序遍历左子树,再前序遍历右子树.

如下图所示,遍历的顺序为:ABDGHCEIF

【数据结构】什么是二叉树?_第13张图片


中序遍历

        中序遍历的规则是:若二叉树为空,则空操作返回,否则从根节点开始(注意不是先访问根节点)先中序遍历根节点的左子树,然后访问根节点,最后中序遍历右子树.

如下图所示,遍历的顺序为:GDHBAEICF

【数据结构】什么是二叉树?_第14张图片


后序遍历

        后序遍历的规则是:若二叉树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根节点.

如下图所示,遍历的顺序为:GHDBIEFCA

【数据结构】什么是二叉树?_第15张图片


层序遍历

        层序遍历的规则是:若二叉树为空,则空操作返回,否则从树的第一层,也就是根节点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问.

如下图所示,遍历的顺序为:ABCDEFGHI

【数据结构】什么是二叉树?_第16张图片


结语

希望这篇二叉树的介绍能对大家有所帮助,欢迎大佬们留言或私信与我交流.

学海漫浩浩,我亦苦作舟!关注我,大家一起学习,一起进步!

相关文章推荐

【数据结构】什么是树?

【数据结构】什么是线性表?

【数据结构】什么是栈?

【数据结构】用C语言实现顺序栈(附完整运行代码)

【数据结构】深入浅出理解链表中二级指针的应用

【数据结构】10道经典面试题目带你玩转链表


你可能感兴趣的:(数据结构,数据结构,c语言,算法,学习,笔记,二叉树)