Redis基本介绍和使用场景

1、什么是Redis

Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,因此读写速度非常快,常用于缓存,消息队列、分布式锁等场景

Redis 提供了多种数据类型来支持不同的业务场景,比如 String(字符串)、Hash(哈希)、 List (列表)、Set(集合)、Zset(有序集合)、Bitmaps(位图)、HyperLogLog(基数统计)、GEO(地理信息)、Stream(流),并且对数据类型的操作都是原子性的,因为执行命令由单线程负责的,不存在并发竞争的问题。

除此之外,Redis 还支持事务 、持久化、Lua 脚本、多种集群方案(主从复制模式、哨兵模式、切片机群模式)、发布/订阅模式,内存淘汰机制、过期删除机制等等。

2、为什么要使用Redis

一个产品的使用场景肯定是需要根据产品的特性,先列举一下Redis的特点:

  • 读写性能优异
    • Redis能读的速度是110000次/s,写的速度是81000次/s (测试条件见下一节)。
  • 数据类型丰富
    • Redis支持二进制案例的 Strings, Lists, Hashes, Sets 及 Ordered Sets 数据类型操作。
  • 原子性
    • Redis的所有操作都是原子性的,同时Redis还支持对几个操作全并后的原子性执行。
  • 丰富的特性
    • Redis支持 publish/subscribe, 通知, key 过期等特性。
  • 持久化
    • Redis支持RDB, AOF等持久化方式
  • 发布订阅
    • Redis支持发布/订阅模式
  • 分布式
    • Redis Cluster

(PS: 具体再结合下面的使用场景理解下)

下面是官方的bench-mark根据如下条件获得的性能测试(读的速度是110000次/s,写的速度是81000次/s

  • 测试完成了50个并发执行100000个请求。
  • 设置和获取的值是一个256字节字符串。
  • Linux box是运行Linux 2.6,这是X3320 Xeon 2.5 ghz。
  • 文本执行使用loopback接口(127.0.0.1)。

3、Redis的使用场景

redis应用场景总结redis平时我们用到的地方蛮多的,下面就了解的应用场景做个总结:

3.1 热点数据的缓存

缓存是Redis最常见的应用场景,之所有这么使用,主要是因为Redis读写性能优异。而且逐渐有取代memcached,成为首选服务端缓存的组件。而且,Redis内部是支持事务的,在使用时候能有效保证数据的一致性。

作为缓存使用时,一般有两种方式保存数据:

  • 读取前,先去读Redis,如果没有数据,读取数据库,将数据拉入Redis。
  • 插入数据时,同时写入Redis。

方案一:实施起来简单,但是有两个需要注意的地方:

  • 避免缓存击穿。(数据库没有就需要命中的数据,导致Redis一直没有数据,而一直命中数据库。)
  • 数据的实时性相对会差一点。

方案二:数据实时性强,但是开发时不便于统一处理。

当然,两种方式根据实际情况来适用。如:方案一适用于对于数据实时性要求不是特别高的场景。方案二适用于字典表、数据量不大的数据存储。

3.2 限时业务的运用

redis中可以使用expire命令设置一个键的生存时间,到时间后redis会删除它。利用这一特性可以运用在限时的优惠活动信息、手机验证码等业务场景。

3.3 计数器相关问题

redis由于incrby命令可以实现原子性的递增,所以可以运用于高并发的秒杀活动、分布式序列号的生成、具体业务还体现在比如限制一个手机号发多少条短信、一个接口一分钟限制多少请求、一个接口一天限制调用多少次等等。

3.4 分布式锁

这个主要利用redis的setnx命令进行,setnx:"set if not exists"就是如果不存在则成功设置缓存同时返回1,否则返回0 ,这个特性在很多后台中都有所运用,因为我们服务器是集群的,定时任务可能在两台机器上都会运行,所以在定时任务中首先 通过setnx设置一个lock, 如果成功设置则执行,如果没有成功设置,则表明该定时任务已执行。 当然结合具体业务,我们可以给这个lock加一个过期时间,比如说30分钟执行一次的定时任务,那么这个过期时间设置为小于30分钟的一个时间就可以,这个与定时任务的周期以及定时任务执行消耗时间相关。

在分布式锁的场景中,主要用在比如秒杀系统等。

3.5 延时操作

比如在订单生产后我们占用了库存,10分钟后去检验用户是否真正购买,如果没有购买将该单据设置无效,同时还原库存。 由于redis自2.8.0之后版本提供Keyspace Notifications功能,允许客户订阅Pub/Sub频道,以便以某种方式接收影响Redis数据集的事件。 所以我们对于上面的需求就可以用以下解决方案,我们在订单生产时,设置一个key,同时设置10分钟后过期, 我们在后台实现一个监听器,监听key的实效,监听到key失效时将后续逻辑加上。

当然我们也可以利用rabbitmq、activemq等消息中间件的延迟队列服务实现该需求。

3.6 排行榜相关问题

关系型数据库在排行榜方面查询速度普遍偏慢,所以可以借助redis的SortedSet进行热点数据的排序。

比如点赞排行榜,做一个SortedSet, 然后以用户的openid作为上面的username, 以用户的点赞数作为上面的score, 然后针对每个用户做一个hash, 通过zrangebyscore就可以按照点赞数获取排行榜,然后再根据username获取用户的hash信息,这个当时在实际运用中性能体验也蛮不错的。

3.7 点赞、好友等相互关系的存储

Redis 利用集合的一些命令,比如求交集、并集、差集等。

在微博应用中,每个用户关注的人存在一个集合中,就很容易实现求两个人的共同好友功能。

3.8 简单队列

由于Redis有list push和list pop这样的命令,所以能够很方便的执行队列操作。

你可能感兴趣的:(Redis,redis)