主要用于分布式任务调度,可以将任务调度和执行分布在多个节点上。它提供了一个集中式的管理平台,支持动态添加、修改、删除任务,以及任务的分片执行,确保任务在分布式环境中的高可用性的一个框架
spring传统的定时任务@Scheduled,但是这样存在这一些问题 :
做集群任务的重复执行问题
cron表达式定义在代码之中,修改不方便
定时任务失败了,无法重试也没有统计
如果任务量过大,不能有效的分片执行
解决这些问题的方案为:
xxl-job 分布式任务调度框架
当前软件的架构已经开始向分布式架构转变,将单体结构拆分为若干服务,服务之间通过网络交互来完成业务处理。在分布式架构下,一个服务往往会部署多个实例来运行我们的业务,如果在这种分布式系统环境下运行任务调度,我们称之为分布式任务调度。
将任务调度程序分布式构建,这样就可以具有分布式系统的特点,并且提高任务的调度处理能力:
1、并行任务调度
并行任务调度实现靠多线程,如果有大量任务需要调度,此时光靠多线程就会有瓶颈了,因为一台计算机CPU的处理能力是有限的。
如果将任务调度程序分布式部署,每个结点还可以部署为集群,这样就可以让多台计算机共同去完成任务调度,我们可以将任务分割为若干个分片,由不同的实例并行执行,来提高任务调度的处理效率。
2、高可用
若某一个实例宕机,不影响其他实例来执行任务。
3、弹性扩容
当集群中增加实例就可以提高并执行任务的处理效率。
4、任务管理与监测
对系统中存在的所有定时任务进行统一的管理及监测。让开发人员及运维人员能够时刻了解任务执行情况,从而做出快速的应急处理响应。
分布式任务调度面临的问题:
当任务调度以集群方式部署,同一个任务调度可能会执行多次,例如:电商系统定期发放优惠券,就可能重复发放优惠券,对公司造成损失,信用卡还款提醒就会重复执行多次,给用户造成烦恼,所以我们需要控制相同的任务在多个运行实例上只执行一次。常见解决方案:
针对分布式任务调度的需求,市场上出现了很多的产品:
1) TBSchedule:淘宝推出的一款非常优秀的高性能分布式调度框架,目前被应用于阿里、京东、支付宝、国美等很多互联网企业的流程调度系统中。但是已经多年未更新,文档缺失严重,缺少维护。
2) XXL-Job:大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台, 其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
3)Elastic-job:当当网借鉴TBSchedule并基于quartz 二次开发的弹性分布式任务调度系统,功能丰富强大,采用zookeeper实现分布式协调,具有任务高可用以及分片功能。
4)Saturn: 唯品会开源的一个分布式任务调度平台,基于Elastic-job,可以全域统一配置,统一监
控,具有任务高可用以及分片功能。
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
源码地址:https://gitee.com/xuxueli0323/xxl-job
文档地址:https://www.xuxueli.com/xxl-job/
特性
源码仓库地址 | Release Download |
---|---|
https://github.com/xuxueli/xxl-job | Download |
http://gitee.com/xuxueli0323/xxl-job | Download |
也可以使用资料文件夹中的源码
请下载项目源码并解压,获取 “调度数据库初始化SQL脚本” 并执行即可。
位置:/xxl-job/doc/db/tables_xxl_job.sql
共8张表
- xxl_job_lock:任务调度锁表;
- xxl_job_group:执行器信息表,维护任务执行器信息;
- xxl_job_info:调度扩展信息表: 用于保存XXL-JOB调度任务的扩展信息,如任务分组、任务名、机器地址、执行器、执行入参和报警邮件等等;
- xxl_job_log:调度日志表: 用于保存XXL-JOB任务调度的历史信息,如调度结果、执行结果、调度入参、调度机器和执行器等等;
- xxl_job_logglue:任务GLUE日志:用于保存GLUE更新历史,用于支持GLUE的版本回溯功能;
- xxl_job_registry:执行器注册表,维护在线的执行器和调度中心机器地址信息;
- xxl_job_user:系统用户表;
调度中心支持集群部署,集群情况下各节点务必连接同一个mysql实例;
如果mysql做主从,调度中心集群节点务必强制走主库;
解压源码,按照maven格式将源码导入IDE, 使用maven进行编译即可,源码结构如下:
调度中心项目:xxl-job-admin
作用:统一管理任务调度平台上调度任务,负责触发调度执行,并且提供任务管理平台。
步骤一:调度中心配置
调度中心配置文件地址:/xxl-job/xxl-job-admin/src/main/resources/application.properties
数据库的连接信息修改为自己的数据库
### web
server.port=8888
server.servlet.context-path=/xxl-job-admin
### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false
### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/
### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.##########
### mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model
### xxl-job, datasource
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl_job?Unicode=true&serverTimezone=Asia/Shanghai&characterEncoding=UTF-8
spring.datasource.username=root
spring.datasource.password=root
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1
### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
[email protected]
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory
### xxl-job, access token
xxl.job.accessToken=
### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN
## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100
### xxl-job, log retention days
xxl.job.logretentiondays=30
启动调度中心,默认登录账号 “admin/123456”, 登录后运行界面如下图所示。
1.创建mysql容器,初始化xxl-job的SQL脚本
docker run -p 3306:3306 --name mysql57 \
-v /opt/mysql/conf:/etc/mysql \
-v /opt/mysql/logs:/var/log/mysql \
-v /opt/mysql/data:/var/lib/mysql \
-e MYSQL_ROOT_PASSWORD=root \
-d mysql:5.7
2.拉取镜像
docker pull xuxueli/xxl-job-admin:2.3.1
docker run -e PARAMS="--spring.datasource.url=jdbc:mysql://192.168.200.130:3306/xxl_job?Unicode=true&characterEncoding=UTF-8 \
--spring.datasource.username=root \
--spring.datasource.password=root" \
-p 8888:8080 -v /tmp:/data/applogs \
--name xxl-job-admin --restart=always -d xuxueli/xxl-job-admin:2.3.1
<dependencies>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-webartifactId>
dependency>
<dependency>
<groupId>com.xuxueligroupId>
<artifactId>xxl-job-coreartifactId>
<version>2.3.1version>
dependency>
dependencies>
server:
port: 8881
xxl:
job:
admin:
addresses: http://192.168.200.130:8888/xxl-job-admin
executor:
//服务注册该执行器的端口 如果有多个服务需要执行器,保证执行器端口不同即可
appname: xxl-job-executor-sample
port: 9999
package com.heima.xxljob.config;
import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* xxl-job config
*
* @author xuxueli 2017-04-28
*/
@Configuration
public class XxlJobConfig {
private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);
@Value("${xxl.job.admin.addresses}")
private String adminAddresses;
@Value("${xxl.job.executor.appname}")
private String appname;
@Value("${xxl.job.executor.port}")
private int port;
@Bean
public XxlJobSpringExecutor xxlJobExecutor() {
logger.info(">>>>>>>>>>> xxl-job config init.");
XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
xxlJobSpringExecutor.setAppname(appname);
xxlJobSpringExecutor.setPort(port);
return xxlJobSpringExecutor;
}
}
注册任务执行器
package com.heima.xxljob.job;
import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.stereotype.Component;
@Component
public class HelloJob {
@XxlJob("demoJobHandler")
public void helloJob(){
System.out.println("简单任务执行了。。。。");
}
}
执行器:任务的绑定的执行器,任务触发调度时将会自动发现注册成功的执行器, 实现任务自动发现功能;
另一方面也可以方便的进行任务分组。每个任务必须绑定一个执行器
不同类型任务给与不同执行器名字进行分组管理
以下是执行器的属性说明:
属性名称 | 说明 |
---|---|
AppName | 是每个执行器集群的唯一标示AppName, 执行器会周期性以AppName为对象进行自动注册。可通过该配置自动发现注册成功的执行器, 供任务调度时使用; |
名称 | 执行器的名称, 因为AppName限制字母数字等组成,可读性不强, 名称为了提高执行器的可读性; |
排序 | 执行器的排序, 系统中需要执行器的地方,如任务新增, 将会按照该排序读取可用的执行器列表; |
注册方式 | 调度中心获取执行器地址的方式; |
机器地址 | 注册方式为"手动录入"时有效,支持人工维护执行器的地址信息; |
自动注册和手动注册的区别和配置
基础配置
执行器:每个任务必须绑定一个执行器, 方便给任务进行分组
任务描述:任务的描述信息,便于任务管理;
负责人:任务的负责人;
报警邮件:任务调度失败时邮件通知的邮箱地址,支持配置多邮箱地址,配置多个邮箱地址时用逗号分隔
调度配置
任务配置
BEAN模式:任务以JobHandler方式维护在执行器端;需要结合 “JobHandler” 属性匹配执行器中任务;
阻塞处理策略
阻塞处理策略:调度过于密集执行器来不及处理时的处理策略;
单机串行(默认):调度请求进入单机执行器后,调度请求进入FIFO(First Input First Output)队列并以串行方式运行;
丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败;
覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务;
路由策略
当执行器集群部署时,提供丰富的路由策略,包括;
FIRST(第一个):固定选择第一个机器;
LAST(最后一个):固定选择最后一个机器;
ROUND(轮询)
RANDOM(随机):随机选择在线的机器;
CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。
LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;
LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;
FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;
BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;
SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;
1.修改任务为轮询
2.启动多个微服务
修改yml配置文件
server:
port: ${port:8881}
xxl:
job:
admin:
addresses: http://192.168.200.130:8888/xxl-job-admin
executor:
appname: xxl-job-executor-sample
port: ${executor.port:9999}
3.启动多个微服务
此时俩个服务轮流执行任务
执行器检查到俩个结点注册成功
执行器集群部署时,任务路由策略选择”分片广播”情况下,一次任务调度将会广播触发对应集群中所有执行器执行一次任务
,XXL-Job中的分片广播(Sharding Broadcast)路由策略允许多个任务同时执行。在分片广播策略中,一个任务可以被分成多个子任务,每个子任务被称为一个分片。这些分片可以并行执行,以提高任务的执行效率。
执行器集群部署时,任务路由策略选择”分片广播”情况下,一次任务调度将会广播触发对应集群中所有执行器执行一次任务
需求:让两个节点同时执行10000个任务,每个节点分别执行5000个任务
①:创建分片执行器
②:创建任务,路由策略为分片广播
③:分片广播代码
分片参数
index:当前分片序号(从0开始),执行器集群列表中当前执行器的序号;
total:总分片数,执行器集群的总机器数量;
修改yml配置
server:
port: ${port:8881}
xxl:
job:
admin:
addresses: http://192.168.200.130:8888/xxl-job-admin
executor:
appname: xxl-job-sharding-executor
port: ${executor.port:9999}
代码
@XxlJob("shardingJobHandler")
public void shardingJobHandler() {
// 获取分片的参数
int shardIndex = XxlJobHelper.getShardIndex();
int shardTotal = XxlJobHelper.getShardTotal();
// 获取任务数据
List<Integer> list = getList();
// 遍历任务数据,根据分片参数执行相应的任务项
for (Integer integer : list) {
if (integer % shardTotal == shardIndex) {
System.out.println("当前第" + shardIndex + "分片执行了,任务项为:" + integer);
}
}
}
// 生成任务数据列表 假设1w的任务
public List<Integer> getList() {
//这里的i表示当前任务索引
List<Integer> list = new ArrayList<>();
for (int i = 0; i < 10000; i++) {
list.add(i);
}
return list;
}
因为total就俩台机器,所以任务数量索引取模就可以实现各处理5000的逻辑,当然这是轮询应该做的事情,这里演示的是其并发同时进行的特点