一、Flink 专栏
Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。
1、Flink 部署系列
本部分介绍Flink的部署、配置相关基础内容。
2、Flink基础系列
本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。
3、Flik Table API和SQL基础系列
本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。
4、Flik Table API和SQL提高与应用系列
本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。
5、Flink 监控系列
本部分和实际的运维、监控工作相关。
二、Flink 示例专栏
Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。
两专栏的所有文章入口点击:Flink 系列文章汇总索引
本文介绍了Flink State中的operator state基本功能及示例,其中包含详细的验证步骤与验证结果。
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。
本文除了maven依赖外,没有其他依赖。
本文需要hadoop环境,因为模拟checkpoint的时候使用了hdfs。
本专题分为以下几篇文章:
【flink番外篇】7、flink的State(Keyed State和operator state)介绍及示例(1) - Keyed State
【flink番外篇】7、flink的State(Keyed State和operator state)介绍及示例(2) - operator state
【flink番外篇】7、flink的State(Keyed State和operator state)介绍及示例 - 完整版
关于Flink state的更多介绍参考文章:
8、Flink四大基石之State概念、使用场景、持久化、批处理的详解与keyed state和operator state、broadcast state使用和详细示例
<properties>
<encoding>UTF-8encoding>
<project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
<maven.compiler.source>1.8maven.compiler.source>
<maven.compiler.target>1.8maven.compiler.target>
<java.version>1.8java.version>
<scala.version>2.12scala.version>
<flink.version>1.17.0flink.version>
properties>
<dependencies>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-clients_2.12artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-scala_2.12artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-javaartifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-streaming-scala_2.12artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-streaming-java_2.12artifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.slf4jgroupId>
<artifactId>slf4j-log4j12artifactId>
<version>1.7.7version>
<scope>runtimescope>
dependency>
<dependency>
<groupId>log4jgroupId>
<artifactId>log4jartifactId>
<version>1.2.17version>
<scope>runtimescope>
dependency>
<dependency>
<groupId>org.projectlombokgroupId>
<artifactId>lombokartifactId>
<version>1.18.2version>
<scope>providedscope>
dependency>
<dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-commonartifactId>
<version>3.1.4version>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-clientartifactId>
<version>3.1.4version>
dependency>
<dependency>
<groupId>org.apache.hadoopgroupId>
<artifactId>hadoop-hdfsartifactId>
<version>3.1.4version>
dependency>
dependencies>
用户可以通过实现 CheckpointedFunction 接口来使用 operator state。
CheckpointedFunction 接口提供了访问 non-keyed state 的方法,需要实现如下两个方法:
void snapshotState(FunctionSnapshotContext context) throws Exception;
void initializeState(FunctionInitializationContext context) throws Exception;
进行 checkpoint 时会调用 snapshotState()。 用户自定义函数初始化时会调用 initializeState(),初始化包括第一次自定义函数初始化和从之前的 checkpoint 恢复。 因此 initializeState() 不仅是定义不同状态类型初始化的地方,也需要包括状态恢复的逻辑。
当前 operator state 以 list 的形式存在。这些状态是一个 可序列化 对象的集合 List,彼此独立,方便在改变并发后进行状态的重新分派。 换句话说,这些对象是重新分配 non-keyed state 的最细粒度。根据状态的不同访问方式,有如下几种重新分配的模式:
Even-split redistribution: 每个算子都保存一个列表形式的状态集合,整个状态由所有的列表拼接而成。当作业恢复或重新分配的时候,整个状态会按照算子的并发度进行均匀分配。 比如说,算子 A 的并发读为 1,包含两个元素 element1 和 element2,当并发读增加为 2 时,element1 会被分到并发 0 上,element2 则会被分到并发 1 上。
Union redistribution: 每个算子保存一个列表形式的状态集合。整个状态由所有的列表拼接而成。当作业恢复或重新分配时,每个算子都将获得所有的状态数据。 Do not use this feature if your list may have high cardinality. Checkpoint metadata will store an offset to each list entry, which could lead to RPC framesize or out-of-memory errors.
下面的例子中的 SinkFunction 在 CheckpointedFunction 中进行数据缓存,然后统一发送到下游,这个例子演示了列表状态数据的 event-split redistribution。
public class BufferingSink implements SinkFunction<Tuple2<String, Integer>>, CheckpointedFunction {
private final int threshold;
private transient ListState<Tuple2<String, Integer>> checkpointedState;
private List<Tuple2<String, Integer>> bufferedElements;
public BufferingSink(int threshold) {
this.threshold = threshold;
this.bufferedElements = new ArrayList<>();
}
@Override
public void invoke(Tuple2<String, Integer> value, Context contex) throws Exception {
bufferedElements.add(value);
if (bufferedElements.size() == threshold) {
for (Tuple2<String, Integer> element: bufferedElements) {
// send it to the sink
}
bufferedElements.clear();
}
}
@Override
public void snapshotState(FunctionSnapshotContext context) throws Exception {
checkpointedState.clear();
for (Tuple2<String, Integer> element : bufferedElements) {
checkpointedState.add(element);
}
}
@Override
public void initializeState(FunctionInitializationContext context) throws Exception {
ListStateDescriptor<Tuple2<String, Integer>> descriptor =
new ListStateDescriptor<>(
"buffered-elements",
TypeInformation.of(new TypeHint<Tuple2<String, Integer>>() {}));
checkpointedState = context.getOperatorStateStore().getListState(descriptor);
if (context.isRestored()) {
for (Tuple2<String, Integer> element : checkpointedState.get()) {
bufferedElements.add(element);
}
}
}
}
initializeState 方法接收一个 FunctionInitializationContext 参数,会用来初始化 non-keyed state 的 “容器”。这些容器是一个 ListState 用于在 checkpoint 时保存 non-keyed state 对象。
注意这些状态是如何初始化的,和 keyed state 类系,StateDescriptor 会包括状态名字、以及状态类型相关信息。
ListStateDescriptor<Tuple2<String, Integer>> descriptor =
new ListStateDescriptor<>(
"buffered-elements",
TypeInformation.of(new TypeHint<Tuple2<Long, Long>>() {}));
checkpointedState = context.getOperatorStateStore().getListState(descriptor);
调用不同的获取状态对象的接口,会使用不同的状态分配算法。比如 getUnionListState(descriptor) 会使用 union redistribution 算法, 而 getListState(descriptor) 则简单的使用 even-split redistribution 算法。
当初始化好状态对象后,我们通过 isRestored() 方法判断是否从之前的故障中恢复回来,如果该方法返回 true 则表示从故障中进行恢复,会执行接下来的恢复逻辑。
正如代码所示,BufferingSink 中初始化时,恢复回来的 ListState 的所有元素会添加到一个局部变量中,供下次 snapshotState() 时使用。 然后清空 ListState,再把当前局部变量中的所有元素写入到 checkpoint 中。
另外,我们同样可以在 initializeState() 方法中使用 FunctionInitializationContext 初始化 keyed state。
带状态的数据源比其他的算子需要注意更多东西。为了保证更新状态以及输出的原子性(用于支持 exactly-once 语义),用户需要在发送数据前获取数据源的全局锁。
public static class CounterSource extends RichParallelSourceFunction<Long> implements CheckpointedFunction {
/** current offset for exactly once semantics */
private Long offset = 0L;
/** flag for job cancellation */
private volatile boolean isRunning = true;
/** 存储 state 的变量. */
private ListState<Long> state;
@Override
public void run(SourceContext<Long> ctx) {
final Object lock = ctx.getCheckpointLock();
while (isRunning) {
// output and state update are atomic
synchronized (lock) {
ctx.collect(offset);
offset += 1;
}
}
}
@Override
public void cancel() {
isRunning = false;
}
@Override
public void initializeState(FunctionInitializationContext context) throws Exception {
state = context.getOperatorStateStore().getListState(new ListStateDescriptor<>(
"state",
LongSerializer.INSTANCE));
// 从我们已保存的状态中恢复 offset 到内存中,在进行任务恢复的时候也会调用此初始化状态的方法
for (Long l : state.get()) {
offset = l;
}
}
@Override
public void snapshotState(FunctionSnapshotContext context) throws Exception {
state.clear();
state.add(offset);
}
}
希望订阅 checkpoint 成功消息的算子,可以参考 org.apache.flink.api.common.state.CheckpointListener 接口。
实际生产中,一般不需要自己实现state,除非特殊情况。
本示例仅仅用于展示state的工作过程。
本示例实现功能是当程序出现异常时能自动重启并保存当前的state信息,当超过2次异常后程序中断运行。
该示例肯定是画蛇添足,Flink已经实现了该类,并且在介绍operator state的时候也给出了示例,本示例仅仅是以极其简单的介绍一下operator state的实现。
import java.util.Iterator;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.runtime.state.FunctionInitializationContext;
import org.apache.flink.runtime.state.FunctionSnapshotContext;
import org.apache.flink.streaming.api.checkpoint.CheckpointedFunction;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
/**
* @author alanchan
* 使用OperatorState中的ListState模拟KafkaSource进行offset维护
*/
public class AlanOperatorState extends RichParallelSourceFunction<String> implements CheckpointedFunction {
private boolean flag = true;
private ListState<Long> offsetState = null;
private Long offset = 0L;
// 创建ListState
@Override
public void initializeState(FunctionInitializationContext context) throws Exception {
ListStateDescriptor<Long> stateDescriptor = new ListStateDescriptor<>("offsetState", Long.class);
offsetState = context.getOperatorStateStore().getListState(stateDescriptor);
}
// 使用state
@Override
public void run(SourceContext<String> ctx) throws Exception {
while (flag) {
Iterator<Long> iterator = offsetState.get().iterator();
// 由于是模拟,该迭代器仅有一条数据
if (iterator.hasNext()) {
offset = iterator.next();
}
offset += 1;
int subTaskId = getRuntimeContext().getIndexOfThisSubtask();
ctx.collect("subTaskId:" + subTaskId + ",当前的offset值为::" + offset);
Thread.sleep(1000);
// 模拟异常
if (offset % 3 == 0) {
throw new Exception("出现了异常.....");
}
}
}
// 持久化state, 该方法会定时执行将state状态从内存存入Checkpoint磁盘目录中
@Override
public void snapshotState(FunctionSnapshotContext context) throws Exception {
offsetState.clear();// 清理内容数据并存入Checkpoint磁盘目录中
offsetState.add(offset);
}
@Override
public void cancel() {
flag = false;
}
}
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* @author alanchan
*
*/
public class TestOperatorStateDemo {
public static void main(String[] args) throws Exception {
System.setProperty("HADOOP_USER_NAME", "alanchan");
// env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
env.setParallelism(1);
env.enableCheckpointing(1000);
// 设置checkpoint点在hdfs上
env.setStateBackend(new FsStateBackend("hdfs://server1:8020//flinktest/flinkckp"));
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 重启策略:程序出现异常的时候,重启2次,每次延迟3秒钟重启,超过2次,程序退出
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(2, 3000));
// source
DataStreamSource<String> ds = env.addSource(new AlanOperatorState()).setParallelism(1);
// transformation
// sink
ds.print();
// execute
env.execute();
}
}
subTaskId:0,当前的offset值为::1
subTaskId:0,当前的offset值为::2
subTaskId:0,当前的offset值为::3
subTaskId:0,当前的offset值为::4
subTaskId:0,当前的offset值为::5
subTaskId:0,当前的offset值为::6
subTaskId:0,当前的offset值为::7
subTaskId:0,当前的offset值为::8
subTaskId:0,当前的offset值为::9
Exception in thread "main" org.apache.flink.runtime.client.JobExecutionException: Job execution failed.
at org.apache.flink.runtime.jobmaster.JobResult.toJobExecutionResult(JobResult.java:144)
at org.apache.flink.runtime.minicluster.MiniClusterJobClient.lambda$getJobExecutionResult$3(MiniClusterJobClient.java:141)
at java.util.concurrent.CompletableFuture.uniApply(Unknown Source)
at java.util.concurrent.CompletableFuture$UniApply.tryFire(Unknown Source)
at java.util.concurrent.CompletableFuture.postComplete(Unknown Source)
at java.util.concurrent.CompletableFuture.complete(Unknown Source)
at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.lambda$invokeRpc$1(AkkaInvocationHandler.java:267)
at java.util.concurrent.CompletableFuture.uniWhenComplete(Unknown Source)
at java.util.concurrent.CompletableFuture$UniWhenComplete.tryFire(Unknown Source)
at java.util.concurrent.CompletableFuture.postComplete(Unknown Source)
at java.util.concurrent.CompletableFuture.complete(Unknown Source)
at org.apache.flink.util.concurrent.FutureUtils.doForward(FutureUtils.java:1277)
at org.apache.flink.runtime.concurrent.akka.ClassLoadingUtils.lambda$null$1(ClassLoadingUtils.java:93)
at org.apache.flink.runtime.concurrent.akka.ClassLoadingUtils.runWithContextClassLoader(ClassLoadingUtils.java:68)
at org.apache.flink.runtime.concurrent.akka.ClassLoadingUtils.lambda$guardCompletionWithContextClassLoader$2(ClassLoadingUtils.java:92)
at java.util.concurrent.CompletableFuture.uniWhenComplete(Unknown Source)
at java.util.concurrent.CompletableFuture$UniWhenComplete.tryFire(Unknown Source)
at java.util.concurrent.CompletableFuture.postComplete(Unknown Source)
at java.util.concurrent.CompletableFuture.complete(Unknown Source)
at org.apache.flink.runtime.concurrent.akka.AkkaFutureUtils$1.onComplete(AkkaFutureUtils.java:47)
at akka.dispatch.OnComplete.internal(Future.scala:300)
at akka.dispatch.OnComplete.internal(Future.scala:297)
at akka.dispatch.japi$CallbackBridge.apply(Future.scala:224)
at akka.dispatch.japi$CallbackBridge.apply(Future.scala:221)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:64)
at org.apache.flink.runtime.concurrent.akka.AkkaFutureUtils$DirectExecutionContext.execute(AkkaFutureUtils.java:65)
at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:72)
at scala.concurrent.impl.Promise$DefaultPromise.$anonfun$tryComplete$1(Promise.scala:288)
at scala.concurrent.impl.Promise$DefaultPromise.$anonfun$tryComplete$1$adapted(Promise.scala:288)
。。。。。。
at akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:49)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(ForkJoinExecutorConfigurator.scala:48)
at java.util.concurrent.ForkJoinTask.doExec(Unknown Source)
at java.util.concurrent.ForkJoinPool$WorkQueue.runTask(Unknown Source)
at java.util.concurrent.ForkJoinPool.runWorker(Unknown Source)
at java.util.concurrent.ForkJoinWorkerThread.run(Unknown Source)
Caused by: org.apache.flink.runtime.JobException: Recovery is suppressed by FixedDelayRestartBackoffTimeStrategy(maxNumberRestartAttempts=2, backoffTimeMS=3000)
at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.handleFailure(ExecutionFailureHandler.java:139)
at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.getFailureHandlingResult(ExecutionFailureHandler.java:83)
at org.apache.flink.runtime.scheduler.DefaultScheduler.recordTaskFailure(DefaultScheduler.java:258)
。。。。。。
at akka.actor.AbstractActor.aroundReceive(AbstractActor.scala:220)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:579)
at akka.actor.ActorCell.invoke(ActorCell.scala:547)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:270)
at akka.dispatch.Mailbox.run(Mailbox.scala:231)
at akka.dispatch.Mailbox.exec(Mailbox.scala:243)
... 4 more
Caused by: java.lang.Exception: 出现了异常.....
at org.datastreamapi.state.AlanOperatorState.run(AlanOperatorState.java:46)
at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:110)
at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:67)
at org.apache.flink.streaming.runtime.tasks.SourceStreamTask$LegacySourceFunctionThread.run(SourceStreamTask.java:333)
以上,本文介绍了Flink State中的operator state基本功能及示例,其中包含详细的验证步骤与验证结果。
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。
本专题分为以下几篇文章:
【flink番外篇】7、flink的State(Keyed State和operator state)介绍及示例(1) - Keyed State
【flink番外篇】7、flink的State(Keyed State和operator state)介绍及示例(2) - operator state
【flink番外篇】7、flink的State(Keyed State和operator state)介绍及示例 - 完整版