Best Time to Buy and Sell Stock with Transaction Fee
题目等级:Medium
题目描述:
Your are given an array of integers prices
, for which the i
-th element is the price of a given stock on day i
; and a non-negative integer fee
representing a transaction fee.
You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)
Return the maximum profit you can make.
Example 1:
Input: prices = [1, 3, 2, 8, 4, 9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
Buying at prices[0] = 1
Selling at prices[3] = 8
Buying at prices[4] = 4
Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
题意:给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。可以无限次地完成交易,但是每次交易都需要付手续费。返回获得利润的最大值。
解题思路(动态规划):
终于到了买卖股票的最后一道题。。。
有了上一题(冷冻期)的经验,这道题实际不难了,同样是无数次情况的一个变形,只不过每次需要交一定的费用。实际很类似,有了上一题状态的定义,稍加修改就是这个题了。
同样的,每一天是一个阶段,每一阶段的决策就是:每天决定买还是卖,而每一天有两个状态:手里持有股票、手里没有股票。
和上题一样,仍然定义两个状态变量:
sell[i]:表示在第i天结束后手里没有股票的情况下,获得的最大收益。
hold[i]:表示在第i天结束后手里仍然持有股票的情况下获得的最大收益。
其状态转移也不难分析:
如果当天结束时仍然持有股票,那么有两种可能:(1)今天刚买的,那么说明前一天结束的时候手里没有股票了,即hold[i]=sell[i-1]-prices[i]
. (2)以前就买了,今天啥也没干,也没买也没卖,换句话说就是前一天结束的时候手里已经有了,即:hold[i]=hold[i-1]
。
如果当天结束的时候手里没有股票,那么说明也有两种可能:(1)今天刚卖了, 也就是说前一天结束的时候手里还是持有股票的,而今天卖的时候还有交纳费用,所以:sell[i]=hold[i-1]+prices[i]-fee
.(2)以前就卖了,今天啥也没干,那说明前一天结束的时候手里已经没有股票了,所以:sell[i]=sell[i-1]
.
综合起来,就可以得到状态转移方程:
hold[i]=max(sell[i-1]-prices[i],hold[i-1])
sell[i]=max(hold[i-1]+prices[i]-fee,sell[i-1])
初始条件还是一样的,第一天的时候不可能卖出,一定会买入,这实际上还是贪心思想的一种体现,第一天可以买一定是会买的,在处理不限次数的交易时,已经证明了这种贪心思想的正确性,所以sell[0]=0
,而hold[0]=-prices[0]
.
最后,根据以上分析给出以下代码:
public int maxProfit(int[] prices, int fee) {
if(prices==null || prices.length==0)
return 0;
int len=prices.length;
int[] sell=new int[len];
int[] hold=new int[len];
sell[0]=0;
hold[0]=-prices[0];
for(int i=1;i
时间复杂度:O(n),空间复杂度:O(2n)
总结
本题是买卖股票6道题的最后一题了,做一个简单的总结,这一系列题目是动态规划和贪心思想的运用。我们可以看到:实际上在冷冻期和需要费用的这两道题目中定义的两个状态sell和hold是可以解决所有的不限制交易次数的题目的,包括我们的无数次交易也可以通过这两个状态来写出转移方程,因为不管条件如何变,只要没有限制交易次数,每天的状态都还是这两个。而限制了交易次数的,状态就会复杂一些,就需要一个二维状态,这也就是在允许交易K次的题目中我们给出的方法。
因此,到此为止,不管股票买卖这道题再给出什么条件,我们都可以做了,因为限制次数的和不限制次数的两种情况下的状态我们都清楚了,只需要根据不同的条件写出转移方程就可以了。
一次交易:【LeetCode】121、买卖股票的最佳时机
两次交易:【LeetCode】123、买卖股票的最佳时机 III
K次交易:【LeetCode】188、买卖股票的最佳时机 IV
无数次交易:【LeetCode】122、买卖股票的最佳时机 II
无数次交易含冷冻期:【LeetCode】309、最佳买卖股票时机含冷冻期
无数次交易含交易费用:【LeetCode】714、买卖股票的最佳时机含手续费