@inproceedings{liang2022fusion,
title={Fusion from decomposition: A self-supervised decomposition approach for image fusion},
author={Liang, Pengwei and Jiang, Junjun and Liu, Xianming and Ma, Jiayi},
booktitle={European Conference on Computer Vision},
pages={719–735},
year={2022},
organization={Springer}
}
论文级别:ECCV 2022
影响因子:
[论文下载地址]
作者提出了一个图像分解模型(DeFusion),通过【自监督】实现图像融合。在没有配对数据的情况下,该模型可以将源图像【分解到特征嵌入空间】(在该空间中可以分离共有特征和独有特征),在分解阶段通过联合训练的重构头在嵌入空间内实现图像融合。该模型是一个图像融合的【通用模型】
Image fusion · Self-supervised learning · Image decomposion
图像融合,自监督学习,图像分解
作者认为,图像融合本质就是对多源图像重要互补信息进行整合。基于此思想,【将源图像分解为特有分量和共有分量】,将分量简单【组合】即可得到融合图像。因此,作者设计了一个前置任务(pretext task)——共有及特有分解(common and unique decomposition ,CUD),用来在一个自监督学习框架下进行图像分解。具体操作为:
参考链接
[什么是图像融合?(一看就通,通俗易懂)]
[对 pretext tasks 的理解]
作者提出的网络结构如下所示。
无标签图像 x x x代表原始场景,使用随机掩膜 M i M_i Mi和高斯噪声 n n n模拟退化变换 T \mathcal T T:
M ˉ i \bar M_i Mˉi是用随机掩膜 M i M_i Mi的逻辑否运算。
将” x 1 x_1 x1和 x 2 x_2 x2输入分解网络DeNet ϕ θ ( ⋅ ) \phi_\theta(·) ϕθ(⋅),得到共有特征 f c f_c fc以及各自的特有特征 f u 1 f_u^1 fu1和 f u 2 f_u^2 fu2
映入映射头将嵌入图像投影至图像空间
对于共有特征 f c f_c fc,投影 x ^ c = P c ( f c ) {\hat x_c} = {P_c}\left( {{f_c}} \right) x^c=Pc(fc)应该与 x c = M 1 ( x ) ∩ M 2 ( x ) {x_c} = {M_1}\left( x \right) \cap {M_2}\left( x \right) xc=M1(x)∩M2(x)相似。同理,
x u 1 = M 1 ( x ) ∩ M ˉ 2 ( x ) x_u^1 = {M_1}\left( x \right) \cap {\bar M_2}\left( x \right) xu1=M1(x)∩Mˉ2(x), P u ( f c 1 ) {P_u}\left( {{f_c^1}} \right) Pu(fc1)
x u 2 = M ˉ 1 ( x ) ∩ M 2 ( x ) x_u^2 = {\bar M_1}\left( x \right) \cap {M_2}\left( x \right) xu2=Mˉ1(x)∩M2(x), P u ( f c 2 ) {P_u}\left( {{f_c^2}} \right) Pu(fc2)
是相应嵌入图像投影的ground truth
DeNet ϕ θ ( ⋅ ) \phi_\theta(·) ϕθ(⋅)类似于瓶颈(bottleneck)结构,可以防止简单的映射被学习。
由三部分组成:编码器 E θ ( ⋅ ) E_\theta(·) Eθ(⋅),合成器 E θ c ( ⋅ ) E_\theta^c(·) Eθc(⋅),解码器 D θ ( ⋅ ) = { D θ u ( ⋅ ) , D θ c ( ⋅ ) } D_\theta(·)=\{D_\theta^u(·), D_\theta^c(·)\} Dθ(⋅)={Dθu(⋅),Dθc(⋅)}x。
编码器包含三个最大池化层和残差层,获取压缩表示,特征图大小为 H 8 × W 8 × k \frac{H}{8}×\frac{W}{8}×k 8H×8W×k
合成器仅由残差层组成, E θ ( x 1 ) E_\theta(x^1) Eθ(x1)和 E θ ( x 2 ) E_\theta(x^2) Eθ(x2)被concat后输入合成器提取共有表达
解码器包含几个上采样层和残差层,获取嵌入图
图像融合数据集链接
[图像融合常用数据集整理]
参考资料
✨✨✨强烈推荐必看博客 [图像融合定量指标分析]
参考资料
[图像融合论文baseline及其网络模型]
更多实验结果及分析可以查看原文:
[论文下载地址]
[ReCoNet: Recurrent Correction Network for Fast and Efficient Multi-modality Image Fusion]
[RFN-Nest: An end-to-end resid- ual fusion network for infrared and visible images]
[SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images]
[SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer]
[(MFEIF)Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion]
[DenseFuse: A fusion approach to infrared and visible images]
[DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair]
[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
[IFCNN: A general image fusion framework based on convolutional neural network]
[(PMGI) Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity]
[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
[DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion]
[FusionGAN: A generative adversarial network for infrared and visible image fusion]
[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
[U2Fusion: A Unified Unsupervised Image Fusion Network]
综述[Visible and Infrared Image Fusion Using Deep Learning]
[图像融合论文baseline及其网络模型]
[3D目标检测综述:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]
[CVPR2023、ICCV2023论文题目汇总及词频统计]
✨[图像融合论文及代码整理最全大合集]
✨[图像融合常用数据集整理]
如有疑问可联系:[email protected];
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~