多维时序 | MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测

多维时序 | MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测

目录

    • 多维时序 | MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

多维时序 | MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测_第1张图片
多维时序 | MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测_第2张图片
多维时序 | MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测_第3张图片

基本介绍

1.MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测(完整源码和数据)
2.麻雀算法优化参数为隐含层节点数,最大训练次数,初始学习率参数。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

麻雀搜索算法(Sparrow Search Algorithm, SSA)是于2020年提出的。SSA 主要是受麻雀的觅食行为和反捕食行为的启发而提出的。该算法比较新颖,具有寻优能力强,收敛速度快的优点。建立麻雀搜索算法的数学模型,主要规则如下所述:
(1)发现者通常拥有较高的能源储备并且在整个种群中负责搜索到具有丰富食物的区域,为所有的加入者提供觅食的区域和方向。在模型建立中能量储备的高低取决于麻雀个体所对应的适应度值(Fitness Value)的好坏。
(2)一旦麻雀发现了捕食者,个体开始发出鸣叫作为报警信号。当报警值大于安全值时,发现者会将加入者带到其它安全区域进行觅食。
(3)发现者和加入者的身份是动态变化的。只要能够寻找到更好的食物来源,每只麻雀都可以成为发现者,但是发现者和加入者所占整个种群数量的比重是不变的。也就是说,有一只麻雀变成发现者必然有另一只麻雀变成加入者。
(4)加入者的能量越低,它们在整个种群中所处的觅食位置就越差。一些饥肠辘辘的加入者更有可能飞往其它地方觅食,以获得更多的能量。
(5)在觅食过程中,加入者总是能够搜索到提供最好食物的发现者,然后从最好的食物中获取食物或者在该发现者周围觅食。与此同时,一些加入者为了增加自己的捕食率可能会不断地监控发现者进而去争夺食物资源。
(6)当意识到危险时,群体边缘的麻雀会迅速向安全区域移动,以获得更好的位置,位于种群中间的麻雀则会随机走动,以靠近其它麻雀。

程序设计

  • 完整程序和数据下载方式(资源处直接下载):MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
clc;clear;close all;format compact
%%

%% 采用ssa优化
[x ,fit_gen,process]=ssaforbilstm(XTrain,YTrain,XTest,YTest);%分别对隐含层节点 训练次数与学习率寻优
%% 参数设置
pop=5; % 种群数
M=20; % 最大迭代次数
dim=4;%一共有4个参数需要优化
lb=[1   1   1  0.001];%分别对两个隐含层节点 训练次数与学习率寻优
ub=[100 100 50  0.01];%这个分别代表4个参数的上下界,比如第一个参数的范围就是1-100
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
layers = [ ...
    sequenceInputLayer(numFeatures)
    bilstmLayer(numHiddenUnits)
    fullyConnectedLayer(numResponses)
    regressionLayer];
options = trainingOptions('adam', ...
    'MaxEpochs',250, ...
    'GradientThreshold',1, ...
    'InitialLearnRate',0.005, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',125, ...
    'LearnRateDropFactor',0.2, ...
    'ExecutionEnvironment','cpu', ...
    'Verbose',0, ...
    'Plots','training-progress');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------   
net = trainNetwork(XTrain,YTrain,layers,options);
dataTestStandardized = (dataTest - mu) / sig;
XTest = dataTestStandardized(1:end-1);
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(end));
numTimeStepsTest = numel(XTest);

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502
[3] https://blog.csdn.net/article/details/126043107?spm=1001.2014.3001.5502

你可能感兴趣的:(时序预测,SSA-GRU,麻雀算法优化,门控循环单元,多变量时间序列预测)