分享7个Python实战项目代码,让你分分钟晋级大老!快收藏_python编程作品

文章目录

  • 前言
      • 1、抓取知乎图片,只用30行代码:
      • 2、没事闲的时候,听两个聊天机器人互相聊天:
      • 3、分析唐诗的作者是李白还是杜甫:
      • 4、彩票随机生成35选7:
      • 5、自动写检讨书:
      • 6、屏幕录相机,抓屏软件:
      • 7、制作Gif动图:
  • 一、Python入门
  • 二、Python爬虫
  • 三、数据分析
  • 四、数据库与ETL数仓
  • 五、机器学习
  • 六、Python高级进阶
  • 资料领取

前言

关于Python有一句名言:不要重复造轮子。

但是问题有三个:

1、你不知道已经有哪些轮子已经造好了,哪个适合你用。有名有姓的的著名轮子就400多个,更别说没名没姓自己在制造中的轮子。

2、确实没重复造轮子,但是在重复制造汽车。包括好多大神写的好几百行代码,为的是解决一个Excel本身就有的成熟功能。

3、很多人是用来抓图,数据,抓点图片、视频、天气预报自娱自乐一下,然后呢?抓到大数据以后做什么用呢?比如某某啤酒卖的快,然后呢?比如某某电影票房多,然后呢?

我认为用Python应该能分析出来,这个现实的世界属于政治家,商业精英,艺术家,农民,而绝对不会属于Python程序员,纵使代码再精彩也没什么用。

以下是经过Python3.6.4调试通过的代码,与大家分享:

1、抓取知乎图片
2、听两个聊天机器人互相聊天(图灵、青云、小i)

3、AI分析唐诗的作者是李白还是杜

4、彩票随机生成35选7

5、自动写检讨书

6、屏幕录相机

7、制作Gif动图

1、抓取知乎图片,只用30行代码:

import re
from selenium import webdriver
import time
import urllib.request

driver = webdriver.Chrome()
driver.maximize_window()
driver.get("https://www.zhihu.com/question/29134042")
i = 0
while i < 10:
    driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
    time.sleep(2)
    try:
        driver.find_element_by_css_selector('button.QuestionMainAction').click()
        print("page" + str(i))
        time.sleep(1)
    except:
        break
result_raw = driver.page_source
content_list = re.findall("img src=\"(.+?)\" ", str(result_raw))
n = 0
while n < len(content_list):
    i = time.time()
    local = (r"%s.jpg" % (i))
    urllib.request.urlretrieve(content_list[n], local)
    print("编号:" + str(i))
    n = n + 1


2、没事闲的时候,听两个聊天机器人互相聊天:

from time import sleep
import requests
s = input("请主人输入话题:")
while True:
    resp = requests.post("http://www.tuling123.com/openapi/api",data={"key":"4fede3c4384846b9a7d0456a5e1e2943", "info": s, })
    resp = resp.json()
    sleep(1)
    print('小鱼:', resp['text'])
    s = resp['text']
    resp = requests.get("http://api.qingyunke.com/api.php", {'key': 'free', 'appid':0, 'msg': s})
    resp.encoding = 'utf8'
    resp = resp.json()
    sleep(1)
    print('菲菲:', resp['content'])
#网上还有一个据说智商比较高的小i机器人,用爬虫的功能来实现一下:

import urllib.request
import re

while True:
    x = input("主人:")
    x = urllib.parse.quote(x)
    link = urllib.request.urlopen(
        "http://nlp.xiaoi.com/robot/webrobot?&callback=__webrobot_processMsg&data=%7B%22sessionId%22%3A%22ff725c236e5245a3ac825b2dd88a7501%22%2C%22robotId%22%3A%22webbot%22%2C%22userId%22%3A%227cd29df3450745fbbdcf1a462e6c58e6%22%2C%22body%22%3A%7B%22content%22%3A%22" + x + "%22%7D%2C%22type%22%3A%22txt%22%7D")
    html_doc = link.read().decode()
    reply_list = re.findall(r'\"content\":\"(.+?)\\r\\n\"', html_doc)
    print("小i:" + reply_list[-1])


3、分析唐诗的作者是李白还是杜甫:

import jieba
from nltk.classify import NaiveBayesClassifier

# 需要提前把李白的诗收集一下,放在libai.txt文本中。
text1 = open(r"libai.txt", "rb").read()
list1 = jieba.cut(text1)
result1 = " ".join(list1)
# 需要提前把杜甫的诗收集一下,放在dufu.txt文本中。
text2 = open(r"dufu.txt", "rb").read()
list2 = jieba.cut(text2)
result2 = " ".join(list2)

# 数据准备
libai = result1
dufu = result2


# 特征提取
def word_feats(words):
    return dict([(word, True) for word in words])

libai_features = [(word_feats(lb), 'lb') for lb in libai]
dufu_features = [(word_feats(df), 'df') for df in dufu]
train_set = libai_features + dufu_features
# 训练决策
classifier = NaiveBayesClassifier.train(train_set)

# 分析测试
sentence = input("请输入一句你喜欢的诗:")
print("\n")
seg_list = jieba.cut(sentence)
result1 = " ".join(seg_list)
words = result1.split(" ")

# 统计结果


lb = 0
df = 0
for word in words:
    classResult = classifier.classify(word_feats(word))
    if classResult == 'lb':
        lb = lb + 1
    if classResult == 'df':
        df = df + 1

# 呈现比例
x = float(str(float(lb) / len(words)))
y = float(str(float(df) / len(words)))
print('李白的可能性:%.2f%%' % (x * 100))
print('杜甫的可能性:%.2f%%' % (y * 100))


4、彩票随机生成35选7:

import random

temp = [i + 1 for i in range(35)]
random.shuffle(temp)
i = 0
list = []
while i < 7:
    list.append(temp[i])
    i = i + 1
list.sort()
print('\033[0;31;;1m')
print(*list[0:6], end="")
print('\033[0;34;;1m', end=" ")
print(list[-1])


5、自动写检讨书:

import random
import xlrd

ExcelFile = xlrd.open_workbook(r'test.xlsx')
sheet = ExcelFile.sheet_by_name('Sheet1')
i = []
x = input("请输入具体事件:")
y = int(input("老师要求的字数:"))
while len(str(i)) < y * 1.2:
    s = random.randint(1, 60)
    rows = sheet.row_values(s)
    i.append(*rows)
print(" "*8+"检讨书"+"\n"+"老师:")
print("我不应该" + str(x)+",", *i)
print("再次请老师原谅!")
'''
以下是样稿:

请输入具体事件:抽烟
老师要求的字数:200
        检讨书
老师:
我不应该抽烟, 学校一开学就三令五申,一再强调校规校纪,提醒学生不要违反校规,可我却没有把学校和老师的话放在心上,没有重视老师说的话,没有重视学校颁布的重要事项,当成了耳旁风,这些都是不应该的。同时也真诚地希望老师能继续关心和支持我,并却对我的问题酌情处理。 无论在学习还是在别的方面我都会用校规来严格要求自己,我会把握这次机会。 但事实证明,仅仅是热情投入、刻苦努力、钻研学业是不够的,还要有清醒的政治头脑、大局意识和纪律观念,否则就会在学习上迷失方向,使国家和学校受损失。
再次请老师原谅!
'''


6、屏幕录相机,抓屏软件:

from time import sleep
from PIL import ImageGrab

m = int(input("请输入想抓屏几分钟:"))
m = m * 60
n = 1
while n < m:
    sleep(0.02)
    im = ImageGrab.grab()
    local = (r"%s.jpg" % (n))
    im.save(local, 'jpeg')
    n = n + 1


7、制作Gif动图:

from PIL import Image

im = Image.open("1.jpg")
images = []
images.append(Image.open('2.jpg'))
images.append(Image.open('3.jpg'))
im.save('gif.gif', save_all=True, append_images=images, loop=1, duration=1, comment=b"aaabb")

一、Python入门

下面这些内容是Python各个应用方向都必备的基础知识,想做爬虫、数据分析或者人工智能,都得先学会他们。任何高大上的东西,都是建立在原始的基础之上。打好基础,未来的路会走得更稳重。所有资料文末免费领取!!!

包含:

计算机基础

在这里插入图片描述

python基础

在这里插入图片描述

Python入门视频600集:

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

二、Python爬虫

爬虫作为一个热门的方向,不管是在自己兼职还是当成辅助技能提高工作效率,都是很不错的选择。

通过爬虫技术可以将相关的内容收集起来,分析删选后得到我们真正需要的信息。

这个信息收集分析整合的工作,可应用的范畴非常的广泛,无论是生活服务、出行旅行、金融投资、各类制造业的产品市场需求等等,都能够借助爬虫技术获取更精准有效的信息加以利用。

在这里插入图片描述

Python爬虫视频资料

在这里插入图片描述

三、数据分析

清华大学经管学院发布的《中国经济的数字化转型:人才与就业》报告显示,2025年,数据分析人才缺口预计将达230万。

这么大的人才缺口,数据分析俨然是一片广阔的蓝海!起薪10K真的是家常便饭。

在这里插入图片描述

四、数据库与ETL数仓

企业需要定期将冷数据从业务数据库中转移出来存储到一个专门存放历史数据的仓库里面,各部门可以根据自身业务特性对外提供统一的数据服务,这个仓库就是数据仓库。

传统的数据仓库集成处理架构是ETL,利用ETL平台的能力,E=从源数据库抽取数据,L=将数据清洗(不符合规则的数据)、转化(对表按照业务需求进行不同维度、不同颗粒度、不同业务规则计算进行统计),T=将加工好的表以增量、全量、不同时间加载到数据仓库。

在这里插入图片描述

五、机器学习

机器学习就是对计算机一部分数据进行学习,然后对另外一些数据进行预测与判断。

机器学习的核心是“使用算法解析数据,从中学习,然后对新数据做出决定或预测”。也就是说计算机利用以获取的数据得出某一模型,然后利用此模型进行预测的一种方法,这个过程跟人的学习过程有些类似,比如人获取一定的经验,可以对新问题进行预测。

在这里插入图片描述

机器学习资料:

在这里插入图片描述

六、Python高级进阶

从基础的语法内容,到非常多深入的进阶知识点,了解编程语言设计,学完这里基本就了解了python入门到进阶的所有的知识点。

在这里插入图片描述

到这就基本就可以达到企业的用人要求了,如果大家还不知道去去哪找面试资料和简历模板,我这里也为大家整理了一份,真的可以说是保姆及的系统学习路线了。

在这里插入图片描述
但学习编程并不是一蹴而就,而是需要长期的坚持和训练。整理这份学习路线,是希望和大家共同进步,我自己也能去回顾一些技术点。不管是编程新手,还是需要进阶的有一定经验的程序员,我相信都可以从中有所收获。

一蹴而就,而是需要长期的坚持和训练。整理这份学习路线,是希望和大家共同进步,我自己也能去回顾一些技术点。不管是编程新手,还是需要进阶的有一定经验的程序员,我相信都可以从中有所收获。

资料领取

这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以点击下方CSDN官方认证微信卡片免费领取 ↓↓↓【保证100%免费】

在这里插入图片描述

你可能感兴趣的:(编程,Python爬虫,代码,python,开发语言,代码作品)