LeetCode 88 合并两个有序数组

LeetCode 88 合并两个有序数组

给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。

请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。

注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

示例 1:

输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3][2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。

示例 2:

输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1][] 。
合并结果是 [1]

示例 3:

输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [][1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。

提示:

  • nums1.length == m + n
  • nums2.length == n
  • 0 <= m, n <= 200
  • 1 <= m + n <= 200
  • -109 <= nums1[i], nums2[j] <= 109

进阶:你可以设计实现一个时间复杂度为 O(m + n) 的算法解决此问题吗?

方法一:合并后排序

第一步:先合并2个数组
第二部:在合并后的数组中执行排序操作

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {

        // merge the two arrays
        for(int i = m, j = 0; j <= n - 1; i++, j++) {
            nums1[i] = nums2[j];
        }
        // sort the array nums1

        int temp;

        for(int i = 0; i <= nums1.length -1 ; i++) {
            for(int j = i+1; j <= nums1.length - 1; j++) {
                if (nums1[i] > nums1[j]){
                    temp = nums1[i];
                    nums1[i] = nums1[j];
                    nums1[j] = temp;
                } 
            }
        }
    }
}
class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        for (int i = 0; i != n; ++i) {
            nums1[m + i] = nums2[i];
        }
        Arrays.sort(nums1);
    }
}

复杂度分析

  • 时间复杂度:O((m+n)log(m+n))。排序序列长度为 m+n,套用快速排序的时间复杂度即可,平均情况为 O((m+n)log(m+n))。
  • 空间复杂度:O(log(m+n))。排序序列长度为 m+n,套用快速排序的空间复杂度即可,平均情况为 O(log(m+n))。

方法二:双指针

方法一没有利用数组 nums1与 nums2已经被排序的性质。为了利用这一性质,我们可以使用双指针方法。这一方法将两个数组看作队列,每次从两个数组头部取出比较小的数字放到结果中。如下面的动画所示:

LeetCode 88 合并两个有序数组_第1张图片
我们为两个数组分别设置一个指针 p1 与 p2 来作为队列的头部指针。代码实现如下:

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = 0, p2 = 0;
        int[] sorted = new int[m + n];
        int cur;
        while (p1 < m || p2 < n) {
            if (p1 == m) {
                cur = nums2[p2++];
            } else if (p2 == n) {
                cur = nums1[p1++];
            } else if (nums1[p1] < nums2[p2]) {
                cur = nums1[p1++];
            } else {
                cur = nums2[p2++];
            }
            sorted[p1 + p2 - 1] = cur;
        }
        for (int i = 0; i != m + n; ++i) {
            nums1[i] = sorted[i];
        }
    }
}

复杂度分析

  • 时间复杂度:O(m+n) 指针移动单调递增,最多移动 m+n 次,因此时间复杂度为O(m+n)。
  • 空间复杂度:O(m+n)。
    需要建立长度为 m+n 的中间数组 sorted。

方法三:逆向双指针

算法

方法二中,之所以要使用临时变量,是因为如果直接合并到数组 nums 1中,nums 1中的元素可能会在取出之前被覆盖。那么如何直接避免覆盖 nums 1中的元素呢?观察可知,nums 1的后半部分是空的,可以直接覆盖而不会影响结果。因此可以指针设置为从后向前遍历,每次取两者之中的较大者放进
nums 1 的最后面。

严格来说,在此遍历过程中的任意一个时刻,nums 1数组中有m−p 1 −1 个元素被放入nums 1的后半部,nums2数组中有n−p 2−1 个元素被放入 nums 1的后半部,而在指针 p1的后面,
nums 1数组有 m+n−p 1 −1 个位置。由于
m+n−p1 −1≥m−p1 −1+n−p2 −1

等价于

p 2 ≥−1

永远成立,因此 p1 后面的位置永远足够容纳被插入的元素,不会产生p1 的元素被覆盖的情况。

实现代码如下:

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = m - 1, p2 = n - 1;
        int tail = m + n - 1;
        int cur;
        while (p1 >= 0 || p2 >= 0) {
            if (p1 == -1) {
                cur = nums2[p2--];
            } else if (p2 == -1) {
                cur = nums1[p1--];
            } else if (nums1[p1] > nums2[p2]) {
                cur = nums1[p1--];
            } else {
                cur = nums2[p2--];
            }
            nums1[tail--] = cur;
        }
    }
}

复杂度分析

  • 时间复杂度:O(m+n)。
    指针移动单调递减,最多移动 m+n 次,因此时间复杂度为 O(m+n)。
  • 空间复杂度:O(1)。
    直接对数组 nums 1原地修改,不需要额外空间。

你可能感兴趣的:(Leetcode,leetcode,算法,职场和发展)