977.有序数组的平方
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]
最直观的想法,莫过于:每个数平方之后,排个序,代码如下:
class Solution { public: vectorsortedSquares(vector & A) { for (int i = 0; i < A.size(); i++) { A[i] *= A[i]; } sort(A.begin(), A.end()); // 快速排序 return A; } };
这个时间复杂度是 O(n + nlogn), 可以说是O(nlogn)的时间复杂度,但为了和下面双指针法算法时间复杂度有鲜明对比,我记为 O(n + nlog n)。
如动画所示:
不难写出如下代码:
class Solution { public: vectorsortedSquares(vector & A) { int k = A.size() - 1;//易错点 vector result(A.size(), 0);// for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j,因为最后要处理两个元素 if (A[i] * A[i] < A[j] * A[j]) { result[k--] = A[j] * A[j]; j--; } else { result[k--] = A[i] * A[i]; i++; } } return result; } };
此时的时间复杂度为O(n),相对于暴力排序的解法O(n + nlog n)还是提升不少的。
力扣题目链接
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
输入:s = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
提示:
1 <= target <= 10^9
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^5
这道题目暴力解法当然是 两个for循环,然后不断的寻找符合条件的子序列,时间复杂度很明显是O(n^2)。
代码如下:
class Solution { public: int minSubArrayLen(int s, vector& nums) { int result = INT32_MAX; // 最终的结果 int sum = 0; // 子序列的数值之和 int subLength = 0; // 子序列的长度 for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i sum = 0; for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j sum += nums[j]; if (sum >= s) { // 一旦发现子序列和超过了s,更新result subLength = j - i + 1; // 取子序列的长度 result = result < subLength ? result : subLength; break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break } } } // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列 return result == INT32_MAX ? 0 : result; } };
时间复杂度:O(n^2)
空间复杂度:O(1)
在本题中实现滑动窗口,主要确定如下三点:
窗口内是什么?
如何移动窗口的起始位置?
如何移动窗口的结束位置?
窗口就是 满足其和 ≥ s 的长度最小的 连续 子数组。
窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。
窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。
解题的关键在于 窗口的起始位置如何移动,如图所示:
可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)暴力解法降为O(n)。
C++代码如下:
class Solution { public: int minSubArrayLen(int s, vector& nums) { int result = INT32_MAX; int sum = 0; // 滑动窗口数值之和 int i = 0; // 滑动窗口起始位置 int subLength = 0; // 滑动窗口的长度 for (int j = 0; j < nums.size(); j++) { sum += nums[j]; // 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件 while (sum >= s) { subLength = (j - i + 1); // 取子序列的长度 result = result < subLength ? result : subLength; sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置) } } // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列 return result == INT32_MAX ? 0 : result; } }; //个人代码 class Solution { public: int minSubArrayLen(int target, vector & nums) { int sum = 0; int minLength = INT_MAX;//当时将INT_MAX写为UINT_MAX,导致出问题 int length = 0; for(int i=0,j=0;j =target){ length = j-i+1; if(minLength>length){ minLength = length; } sum-=nums[i]; i++; } } return minLength==INT_MAX?0:minLength; } };
时间复杂度:O(n)
空间复杂度:O(1)
904.水果成篮
76.最小覆盖子串
力扣题目链接
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:
输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]
那么我按照左闭右开的原则,来画一圈,大家看一下:
这里每一种颜色,代表一条边,我们遍历的长度,可以看出每一个拐角处的处理规则,拐角处让给新的一条边来继续画。
整体C++代码如下:
class Solution { public: vector> generateMatrix(int n) { vector > res(n, vector (n, 0)); // 使用vector定义一个二维数组 int startx = 0, starty = 0; // 定义每循环一个圈的起始位置 int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理 int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2) int count = 1; // 用来给矩阵中每一个空格赋值 int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位 int i,j; while (loop --) { i = startx; j = starty; // 下面开始的四个for就是模拟转了一圈 // 模拟填充上行从左到右(左闭右开) for (j = starty; j < n - offset; j++) { res[startx][j] = count++; } // 模拟填充右列从上到下(左闭右开) for (i = startx; i < n - offset; i++) { res[i][j] = count++; } // 模拟填充下行从右到左(左闭右开) for (; j > starty; j--) { res[i][j] = count++; } // 模拟填充左列从下到上(左闭右开) for (; i > startx; i--) { res[i][j] = count++; } // 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1) startx++; starty++; // offset 控制每一圈里每一条边遍历的长度 offset += 1; } // 如果n为奇数的话,需要单独给矩阵最中间的位置赋值 if (n % 2) { res[mid][mid] = count; } return res; } }; //提交代码//注意下标和循环变量不一致 class Solution { public: vector > generateMatrix(int n) { vector > result(n,vector (n,0)); int cricle = n; int a=1; int row = 0; int column = 0; if(n==1){ result[0][0]=1; return result; } while(n>1){ for(int j=0;j =0;j--){ result[row][column--] = a; a++; } for(int i=n-2,j=0;i>=0;i--){ result[row--][column] = a; a++; } row++; column++; n-=2; } if(n==1){ result[cricle/2][cricle/2]=cricle*cricle; return result; } return result; } };
时间复杂度 O(n^2): 模拟遍历二维矩阵的时间
空间复杂度 O(1)
54.螺旋矩阵
剑指Offer 29.顺时针打印矩阵