【智能优化算法】基于鲸鱼算法求解单目标优化问题带工具箱附Matlab代码

1 简介

2016年 Mirjalili等 人通过模仿座头鲸气泡网狩猎策略提出了鲸鱼优化算法(WhaleOptimiza-tionAlgorithm,WOA)。基本原理:

2 部分代码

%_________________________________________________________________________%

% Whale Optimization Algorithm (WOA) source codes demo 1.0               %

% You can simply define your cost in a seperate file and load its handle to fobj 

% The initial parameters that you need are:

%__________________________________________

% fobj = @YourCostFunction

% dim = number of your variables

% Max_iteration = maximum number of generations

% SearchAgents_no = number of search agents

% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n

% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n

% If all the variables have equal lower bound you can just

% define lb and ub as two single number numbers

% To run WOA: [Best_score,Best_pos,WOA_cg_curve]=WOA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)

%__________________________________________

clear all 

clc

SearchAgents_no=30; % Number of search agents

Function_name='F4'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)

Max_iteration=1000; % Maximum numbef of iterations

% Load details of the selected benchmark function

[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

[Best_score,Best_pos,WOA_cg_curve]=WOA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);

figure('Position',[269   240   660   290])

%Draw search space

subplot(1,2,1);

func_plot(Function_name);

title('Parameter space')

xlabel('x_1');

ylabel('x_2');

zlabel([Function_name,'( x_1 , x_2 )'])

%Draw objective space

subplot(1,2,2);

semilogy(WOA_cg_curve,'Color','r')

title('Objective space')

xlabel('Iteration');

ylabel('Best score obtained so far');

axis tight

grid on

box on

legend('WOA')

display(['The best solution obtained by WOA is : ', num2str(Best_pos)]);

display(['The best optimal value of the objective funciton found by WOA is : ', num2str(Best_score)]);

img =gcf; %获取当前画图的句柄

print(img, '-dpng', '-r600', './运行结果4.png')         %即可得到对应格式和期望dpi的图像


3 仿真结果

4 参考文献

[1]黄清宝, 李俊兴, 宋春宁, 徐辰华, & 林小峰. (2020). 基于余弦控制因子和多项式变异的鲸鱼优化算法. 控制与决策(3), 10.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。**完整代码获取关注微信公众号天天matlab**

你可能感兴趣的:(【智能优化算法】基于鲸鱼算法求解单目标优化问题带工具箱附Matlab代码)