- Android 高频面试必问之Java基础
2401_86022611
android面试java
常用的JVM调参如下表:|参数|作用描述||—|—||-XX:MetaspaceSize|分配给Metaspace(以字节计)的初始大小。如果不设置的话,默认是20.79M,这个初始大小是触发首次MetaspaceFullGC的阈值,例如-XX:MetaspaceSize=256M||-XX:MaxMetaspaceSize|分配给Metaspace的最大值,超过此值就会触发FullGC,此值默认
- 深度学习回归任务训练代码模版
槐月初叁
深度学习深度学习回归人工智能
深度学习回归任务训练代码模版文章目录深度学习回归任务训练代码模版参数设置功能函数数据加载自定义数据集加载类特征选择(可选)数据读取定义模型训练模型训练迭代+验证迭代使用`tensorboard`输出模型训练过程和指标可视化(可选)结果预测参考参数设置超参设置:config包含所有训练需要的超参数(便于后续的调参),以及模型需要存储的位置device='cuda'iftorch.cuda.is_av
- LightGBM使用
透明的红萝卜123
可以参考LightGBM原生/sk接口的常用参数LightGBM使用lightGBM调参所有的参数含义,参考:http://lightgbm.apachecn.org/cn/latest/Parameters.html调参过程:num_leavesLightGBM使用的是leaf-wise的算法,因此在调节树的复杂程度时,使用的是num_leaves而不是max_depth。样本分布非平衡数据集:
- XGBoost调参demo(Python)
妄念驱动
机器学习算法python机器学习XGBoostpython
XGBoost我们用的是保险公司的一份数据#各种库importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportLogisticRegressionfromsklearn.ensembleimportRandomForestClassifierfromsklearn.metricsi
- AI学习指南深度学习篇-门控循环单元的调参和优化
俞兆鹏
AI学习指南ai
AI学习指南深度学习篇:门控循环单元的调参和优化引言神经网络在处理序列数据(如文本、时间序列等)方面展现出了强大的能力。门控循环单元(GRU)是循环神经网络(RNN)的一种变体,具有较为简单的结构和强大的性能。为了充分发挥GRU的潜力,调参和优化过程至关重要。本文将深入探讨GRU中的调参技巧、训练过程优化及避免过拟合的方法。一、门控循环单元(GRU)简介1.1GRU的结构GRU的结构相对简单,它利
- 人工神经网络通过调整,神经网络怎么调参数
小浣熊的技术
神经网络matlab算法
神经网络算法中,参数的设置或者调整,有什么方法可以采用若果对你有帮助,请点赞。神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用
- 电机速度闭环笔记
NingTD666
pid学习笔记单片机
基本的速度闭环调试已经完成了。实际上,这并不像想象中那么难。我为此做了一些笔记。目前,我的调试经验还不是很丰富,但将来我会持续记录下每一次的经验和心得。01-测速原理与调度方式02-tb6612基本电机驱动03-PID编写与上位机调参
- 《菜菜的机器学习sklearn课堂》随机森林应用泛化误差调参实例
2401_83977689
程序员机器学习sklearn随机森林
clf=DecisionTreeClassifier()clf_s=cross_val_score(clf,wine.data,wine.target,cv=10)plt.plot(range(1,11),rfc_s,label=“RandomForest”)plt.plot(range(1,11),clf_s,label=“DecisionTree”)plt.legend()plt.show()
- 【深度学习入门项目】一文带你弄清决策树(鸢尾花分类)
Better Rose
深度学习深度学习决策树分类
目录实验原理1.信息增益2.增益率3.基尼指数4.剪枝处理一、加载数据集二、配置模型三、训练模型四、模型预测五、模型评估六、决策树调参1.criterion2.max_depth实验原理决策树(decisiontree)是一种应用广泛的机器学习方法。顾名思义,决策树算法的表现形式可以直观理解为一棵树(可以是二叉树或非二叉树)。一棵决策树一般包含一个根节点、一系列内部节点和叶节点,一个叶节点对应一个
- 挑战杯 基于机器学习与大数据的糖尿病预测
laafeer
python
文章目录1前言1课题背景2数据导入处理3数据可视化分析4特征选择4.1通过相关性进行筛选4.2多重共线性4.3RFE(递归特征消除法)4.4正则化5机器学习模型建立与评价5.1评价方式的选择5.2模型的建立与评价5.3模型参数调优5.4将调参过后的模型重新进行训练并与原模型比较6总结1前言优质竞赛项目系列,今天要分享的是基于机器学习与大数据的糖尿病预测该项目较为新颖,适合作为竞赛课题方向,学长非常
- DataCastle 员工离职预测 Baseline
小嗷犬
Python机器学习机器学习数据挖掘sklearn
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。个人主页:小嗷犬的个人主页个人网站:小嗷犬的技术小站个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。本文目录比赛介绍比赛链接赛题描述评分标准比赛数据数据下载数据说明Baseline导包数据读取数据缺失状况样本标签是否均衡打印类别特征类别特征编码特征衍生数据标准化数据降维特征选择不均衡样本处理模型调参XGBo
- 想要自己的专属 AI 猫娘助理?教你使用 CPU 本地安装部署运行 ChatGLM-6B实现
恒TBOSH
GPT-4人工智能
今天介绍的ChatGLM-6B是一个清华开源的、支持中英双语的对话语言模型,基于GLM架构,具有62亿参数。关键的是结合模型量化技术,ChatGLM-6B可以本地安装部署运行在消费级的显卡上做模型的推理和训练(全量仅需14GB显存,INT4量化级别下最低只需6GB显存)虽然智商比不过openAI的ChatGPT模型,但是ChatGLM-6B是个在部署后可以完全本地运行,可以自己随意调参,几乎没有任
- 5G——小区搜索流程
崇子嵘
5G
小区搜索流程小区搜索目标:读取到SIB1.小区搜索流程概述:SIB1在PDSCH信道承载,承载SIB1的信道在哪个位置由PDCCH告诉,而PDCCH的基本信息由MIB告诉,MIB信息由广播信道PBCH广播出去,物理信道解调需要解调参考信号DMRS,DMRS信号与PCI有关联,PCI=3*SSS+PSS。1.SSB(1)SSB由(主同步信号)PSS,(辅同步信号)SSS和PBCH共同构成。(2)SS
- Stable Diffusion 绘画入门教程(webui)
wyply115
StableDiffusionstablediffusion
文章目录一、前言二、做出的效果三、SD使用流程1、大模型2、关键字3、调参数一、前言随着mj和sd绘画软件发布之后,AI绘画开始爆火,很多小伙伴已经挖掘出很多的玩法,哪怕最基础的AI美女、AI壁纸、真人漫改等等都赚的盆满钵满,当然现在入局也不算晚,不同的行业基础依然能开发出很多有趣的玩法。随着使用的深入,各路大神挖掘出更多的玩法,比如创意字、艺术二维码、AI幻术、瞬息宇宙等等,当然还有很多玩法,这
- LSTM 08:超详细LSTM调参指南
datamonday
时间序列分析(TimeSeries)LSTMkeras调参
本文代码运行环境:cudatoolkit=10.1.243cudnn=7.6.5tensorflow-gpu=2.1.0keras-gpu=2.3.1相关文章LSTM01:理解LSTM网络及训练方法LSTM02:如何为LSTM准备数据LSTM03:如何使用Keras编写LSTMLSTM04:4种序列预测模型及Keras实现LSTM05:Keras实现多层LSTM进行序列预测LSTM06:Keras
- pritter-Code formatter(代码格式化)配置
就叫NaN吧
javascripthtmlcss3
pritter-Codeformatter(代码格式化)配置文章目录pritter-Codeformatter(代码格式化)配置前言一、prettier是什么?二、常见参数说明三、配置步骤步骤一:在VScode下载prettier插件步骤二(第一种方法):在vscode‘’设置‘‘中进行调参步骤二(第二种方法):在vscode‘’settings.json‘‘文件中进行调参步骤三:保存时代码的自动
- 20190801感恩日记
Lisa59740
1.感恩最近开始去健身房练力量训练的自己,好久没去,发现身形都变差了,力量训练还是每周坚持一下,保持好的体型2.感恩秋秋分享运营文案怎么写,感恩velly姐和yami分享如何调参数,提升了我拍摄的技术,感恩爱分享的大家。3.感恩麦姐随时分享好用的干货和信息,感恩麦姐在和莫莫聊天,帮助她疏导工作,对我的收获也很大,感恩麦姐乐于帮助他人。4.感恩加入了师爷的赞美群,和她学习如何走心赞美,链接他人。最近
- 作物模型狂奔:WOFOST(PCSE) 数据同化思路
F_Dregs
wofostpcsepython数据同化
去B吧,这里没图整体思路:PCSE-》敏感性分析-》调参-》同化0、准备工作0.0电脑环境我用的Win10啦,Linux、Mac可能得自己再去微调一下。0.1PythonIDE我用的Pycharm,个人感觉最好使的IDE,没有之一。Python解释器随便装个咯,我用的Python3.10版本。对于Python,我其实也是个小白,只会写些小脚本,哈哈哈哈哈。1、核心依赖包1.1PCSEWofost模
- 小程序API能力汇总——基础容器API(三)
IoT砖家涂拉拉
小程序前端javascriptiotAppAPI函数
ty.getAccountInfo获取小程序账号信息需引入MiniKit,且在>=3.1.0版本才可使用参数Objectobject属性类型默认值必填说明completefunction否接口调用结束的回调函数(调用成功、失败都会执行)successfunction否接口调用成功的回调函数failfunction否接口调用失败的回调函数object.success回调参数参数Objectres属性
- Task4 - 建模与调参
100MHz
1.内容介绍线性回归模型:线性回归对于特征的要求;处理长尾分布;理解线性回归模型;模型性能验证:评价函数与目标函数;交叉验证方法;留一验证方法;针对时间序列问题的验证;绘制学习率曲线;绘制验证曲线;嵌入式特征选择:Lasso回归;Ridge回归;决策树;模型对比:常用线性模型;常用非线性模型;模型调参:贪心调参方法;网格调参方法;贝叶斯调参方法;2.一些基本模型线性回归(LinearRegress
- 小程序API能力汇总——基础容器API(一)
IoT砖家涂拉拉
小程序APIiotAppfunctionapache
ty.getEnterOptions获取本次小程序启动时的参数。如果当前是冷启动,则返回值与App.onLaunch的回调参数一致;如果当前是热启动,则返回值与App.onShow一致。需引入MiniKit,且在>=2.0.0版本才可使用参数Objectobject属性类型默认值必填说明completefunction否接口调用结束的回调函数(调用成功、失败都会执行)successfunction
- Task 11 XGBoost 算法分析与案例调参实例
沫2021
1.XGBoost算法XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在GradientBoosting框架下实现机器学习算法。XGBoost提供了并行树提升(也称为GBDT,GBM),可以快速
- 卡尔曼滤波详解(1)
见牛羊
人工智能人工智能数学建模
目录1.核心思想2.五个公式的解读2.1预测部分2.2更新部分3.公式的实际应用4.调参方法1.核心思想首先,卡尔曼滤波器可以用来估计系统的状态,这个状态是时间序列上的,利用上一时刻的状态可以预测当前时刻的状态,利用当前时刻的观测可以更新和修正当前时刻的预测。这么说可能有点绕,看下图。绿色的x表示系统的状态,y表示对系统状态的观测,蓝色的x表示修正后的状态。卡尔曼滤波的核心思想,就是用利用蓝色进行
- 使用深度学习进行验证码识别系统搭建(附项目资源)
粥粥坠腻害
人工智能python深度学习深度学习人工智能tensorflowkeras图像处理cnn迁移学习
目录开发环境1项目介绍2导入所需库并定义超参数3验证码数据生成4构建数据管道5模型架构设计6模型训练及调参7模型评估与预测8改进策略9总结与展望项目资源开发环境作者:嘟粥yyds时间:2023年7月21日集成开发工具:PyCharmProfessional2021.1和GoogleColab集成开发环境:Python3.10.6第三方库:tensorflow-gpu2.10.0、numpy、mat
- Stable Diffusion在线体验
壹米饭
AI绘画人工智能
各位网友观看美图的时候是否想过,如果你也能给自己绘制专属AI美女,是不是很有成就感?可能你曾经觉得绘画创作一般人很难做到,但AI绘画的出现让一切变得简单。接触过AI绘画的朋友都知道,用stablediffusion进行绘图一般需要比较高的门槛,对显卡有较高的要求,安装过程也比较复杂。其他的一些轻量化绘画平台,原理跟stablediffusion基本相似,但可调参数较少,有些效果达不到。现在“提词大
- 决策树最骚操作
统计学家
大家好,最近我原创了一系列文章LightGBM可视化调参用Excel玩机器学习!用浏览器玩机器学习比Tesorflow还强的机器学习库AI黑科技!从此只看高清视频AI黑科技,老照片修复,模糊变高清腾讯的这个算法,我搬到了网上,随便玩!不知道大家是否喜欢这种类型的文章,其实我最近又打算开始更新100天搞定机器学习了,就想用类似lightgbm可视化调参这篇文章的风格,让大家在学习一个模型的时候有参与
- 大语言模型ChatGLM + P-Tuning微调实践
North_D
AI人工智能人工智能自然语言处理chatgptnlptransformer深度学习机器学习
大语言模型ChatGLM+P-Tuning微调实践文章目录大语言模型ChatGLM+P-Tuning微调实践LLM微调基础本次实践环境说明ChatGLM部署以及激活conda环境安装依赖禁用W&B训练数据集、测试数据集准备微调参数调整(train.sh\evaluate.sh)参数说明备查训练推理验证可能会遇到的问题及解决LLM微调基础LLM微调可以对原有预模型进行专业领域知识的训练,相关领域知识
- 梯度提升树系列8——GBDT与其他集成学习方法的比较
theskylife
数据挖掘集成学习机器学习人工智能数据挖掘
目录写在开头1.主要集成学习算法对比1.1GBDT1.2随机森林1.3AdaBoost1.4整体对比2.算法性能的比较分析2.1准确率与性能2.2训练时间和模型复杂度2.3应用实例和案例研究3.选择合适算法的标准3.1数据集的特性3.1.1数据规模与维度3.1.2数据质量3.2性能需求3.2.1准确性3.2.2泛化能力3.3训练效率与资源3.3.1训练时间3.3.2计算资源3.4易用性与调参3.4
- 【平衡小车入门】(PID、FreeRTOS、hal库)
海风-
stm32平衡车mpu6050
本篇博客记录自己复刻的平衡小车前言一、硬件需求二、最终效果三、整体流程第一步:stm32通过DRV8833电机驱动模块使用PWM驱动直流减速电机第二步:理解PID算法在平衡小车中的应用第三步:PID调参四、源代码获取前言从代码上看,平衡小车的实现是比较简单的,特别是只实现平衡。在平衡的基础上可以加上其他功能:视觉、循迹、避障、蓝牙控制等。项目源码直接使用b站up主:会飞的摄影师呀,然后自己对标准库
- Git基础命令操作:创建本地分支、更新合并、远程提交
赤沙咀菜虚坤
[toc]介绍Git是一个开源的分布式版本控制系统,现在基本上是软件开发、深度学习等各种与敲代码有关的项目都要是Git来完成版本管理了。当然还有其他的版本控制工具,像是SVN等,但是现在基本上都是老一批的程序员大叔们在用了。为什么要用Git软件开发,深度学习调参,代码肯定会有各种各种的改变,说不定这个版本还能运行,下个版本就GG了,与其找半天bug甚至根本找不出来还不如回滚旧版本。Git有两种使用
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交