PiflowX组件-WriteToUpsertKafka

WriteToUpsertKafka组件

组件说明

以upsert方式往Kafka topic中写数据。

计算引擎

flink

有界性

Streaming Upsert Mode

组件分组

kafka

端口

Inport:默认端口

outport:默认端口

组件属性

名称 展示名称 默认值 允许值 是否必填 描述 例子
kafka_host KAFKA_HOST “” 逗号分隔的Kafka broker列表。 127.0.0.1:9092
topic TOPIC “” 用于写入Kafka topic名称。 topic-1
tableDefinition TableDefinition “” Flink table定义。
key_format keyFormat “” Set(“json”, “csv”, “avro”) 用于对Kafka消息中key部分序列化的格式。key字段由PRIMARY KEY语法指定。 json
value_format ValueFormat “” Set(“json”, “csv”, “avro”) 用于对Kafka消息中value部分序列化的格式 json
value_fields_include ValueFieldsInclude ALL Set(“ALL”, “EXCEPT_KEY”) 控制哪些字段应该出现在 value 中。可取值:
"ALL:消息的 value 部分将包含 schema 中所有的字段包括定义为主键的字段。
"EXCEPT_KEY:记录的 value 部分包含 schema 的所有字段,定义为主键的字段除外。
ALL
key_fields_prefix KeyFieldsPrefix “” 为所有消息键(Key)格式字段指定自定义前缀,以避免与消息体(Value)格式字段重名。默认情况下前缀为空。 如果定义了前缀,表结构和配置项 ‘key.fields’ 都需要使用带前缀的名称。当构建消息键格式字段时,前缀会被移除, 消息键格式将会使用无前缀的名称。请注意该配置项要求必须将 ‘value.fields-include’ 配置为 ‘EXCEPT_KEY’。
sink_parallelism SinkParallelism “” 定义upsert-kafka sink算子的并行度。默认情况下,由框架确定并行度,与上游链接算子的并行度保持一致。
sink_buffer_flush_max_rows SinkBufferFlushMaxRows “” 缓存刷新前,最多能缓存多少条记录。当sink收到很多同key上的更新时,缓存将保留同key的最后一条记录,因此sink缓存能帮助减少发往Kafka topic的数据量,以及避免发送潜在的tombstone消息。 可以通过设置为 ‘0’ 来禁用它默认,该选项是未开启的。注意,如果要开启sink缓存,需要同时设置 ‘sink.buffer-flush.max-rows’ 和 'sink.buffer-flush.interval两个选项为大于零的值。
sink_buffer_flush_interval SinkBufferFlushInterval “” 该选项可以传递任意的 Kafka 参数。选项的后缀名必须匹配定义在 Kafka 参数文档中的参数名。 Flink 会自动移除 选项名中的 “properties.” 前缀,并将转换后的键名以及值传入 KafkaClient。 例如,你可以通过 ‘properties.allow.auto.create.topics’ = ‘false’ 来禁止自动创建 topic。 但是,某些选项,例如’key.deserializer’ 和 ‘value.deserializer’ 是不允许通过该方式传递参数,因为 Flink 会重写这些参数的值。
properties PROPERTIES “” Kafka source连接器其他配置

WriteToUpsertKafka示例配置

演示实时统计网页pv和uv的总量。

{
  "flow": {
    "name": "UpsertKafkaTest",
    "uuid": "1234",
    "stops": [
      {
        "uuid": "0000",
        "name": "JsonStringParser1",
        "bundle": "cn.piflow.bundle.flink.json.JsonStringParser",
        "properties": {
          "content": "[{\"user_id\":\"1\",\"client_ip\":\"192.168.12.1\",\"client_info\":\"phone\",\"page_code\":\"1001\",\"access_time\":\"2021-01-08 11:32:24\",\"dt\":\"2021-01-08\"},{\"user_id\":\"1\",\"client_ip\":\"192.168.12.1\",\"client_info\":\"phone\",\"page_code\":\"1201\",\"access_time\":\"2021-01-08 11:32:55\",\"dt\":\"2021-01-08\"},{\"user_id\":\"2\",\"client_ip\":\"192.165.12.1\",\"client_info\":\"pc\",\"page_code\":\"1031\",\"access_time\":\"2021-01-08 11:32:59\",\"dt\":\"2021-01-08\"},{\"user_id\":\"1\",\"client_ip\":\"192.168.12.1\",\"client_info\":\"phone\",\"page_code\":\"1101\",\"access_time\":\"2021-01-08 11:33:24\",\"dt\":\"2021-01-08\"},{\"user_id\":\"3\",\"client_ip\":\"192.168.10.3\",\"client_info\":\"pc\",\"page_code\":\"1001\",\"access_time\":\"2021-01-08 11:33:30\",\"dt\":\"2021-01-08\"},{\"user_id\":\"1\",\"client_ip\":\"192.168.12.1\",\"client_info\":\"phone\",\"page_code\":\"1001\",\"access_time\":\"2021-01-08 11:34:24\",\"dt\":\"2021-01-08\"}]",
          "schema": "user_id:STRING,client_ip:STRING,client_info:STRING,page_code:STRING,access_time:TIMESTAMP,dt:STRING"
        }
      },
      {
        "uuid": "1111",
        "name": "WriteToKafka1",
        "bundle": "cn.piflow.bundle.flink.kafka.WriteToKafka",
        "properties": {
          "kafka_host": "hadoop01:9092",
          "topic": "user_ip_pv",
          "tableDefinition": "{\"catalogName\":null,\"dbname\":null,\"tableName\":null,\"ifNotExists\":true,\"physicalColumnDefinition\":[{\"columnName\":\"user_id\",\"columnType\":\"STRING\",\"comment\":\"用户ID\"},{\"columnName\":\"client_ip\",\"columnType\":\"STRING\",\"comment\":\"客户端IP\"},{\"columnName\":\"client_info\",\"columnType\":\"STRING\",\"comment\":\"设备机型信息\"},{\"columnName\":\"page_code\",\"columnType\":\"STRING\",\"comment\":\"页面代码\"},{\"columnName\":\"access_time\",\"columnType\":\"TIMESTAMP\",\"comment\":\"请求时间\"},{\"columnName\":\"dt\",\"columnType\":\"STRING\",\"comment\":\"时间分区天\"}],\"metadataColumnDefinition\":null,\"computedColumnDefinition\":null,\"watermarkDefinition\":null}",
          "format": "json",
          "properties": "{\"json.ignore-parse-errors\":\"true\"}"
        }
      },
      {
        "uuid": "2222",
        "name": "ReadFromKafka1",
        "bundle": "cn.piflow.bundle.flink.kafka.ReadFromKafka",
        "properties": {
          "kafka_host": "hadoop01:9092",
          "topic": "user_ip_pv",
          "group": "test",
          "startup_mode": "earliest-offset",
          "tableDefinition": "{\"catalogName\":null,\"dbname\":null,\"tableName\":\"source_ods_fact_user_ip_pv\",\"ifNotExists\":true,\"physicalColumnDefinition\":[{\"columnName\":\"user_id\",\"columnType\":\"STRING\",\"comment\":\"用户ID\"},{\"columnName\":\"client_ip\",\"columnType\":\"STRING\",\"comment\":\"客户端IP\"},{\"columnName\":\"client_info\",\"columnType\":\"STRING\",\"comment\":\"设备机型信息\"},{\"columnName\":\"page_code\",\"columnType\":\"STRING\",\"comment\":\"页面代码\"},{\"columnName\":\"access_time\",\"columnType\":\"TIMESTAMP\",\"comment\":\"请求时间\"},{\"columnName\":\"dt\",\"columnType\":\"STRING\",\"comment\":\"时间分区天\"}],\"metadataColumnDefinition\":null,\"computedColumnDefinition\":null,\"watermarkDefinition\":null}",
          "format": "json",
          "properties": "{}"
        }
      },
      {
        "uuid": "3333",
        "name": "SQLExecute1",
        "bundle": "cn.piflow.bundle.flink.common.SQLExecute",
        "properties": {
          "sql": "CREATE VIEW view_total_pv_uv_min AS SELECT dt AS do_date, count(client_ip) AS pv, count(DISTINCT client_ip) AS uv,max(access_time) AS access_time FROM source_ods_fact_user_ip_pv GROUP BY dt;"
        }
      },
      {
        "uuid": "4444",
        "name": "WriteToUpsertKafka1",
        "bundle": "cn.piflow.bundle.flink.kafka.WriteToUpsertKafka",
        "properties": {
          "kafka_host": "hadoop01:9092",
          "topic": "result_total_pv_uv_min",
          "key_format": "json",
          "value_format": "json",
          "value_fields_include": "ALL",
          "tableDefinition": "{\"catalogName\":null,\"dbname\":null,\"tableName\":\"result_total_pv_uv_min\",\"ifNotExists\":true,\"physicalColumnDefinition\":[{\"columnName\":\"do_date\",\"columnType\":\"STRING\",\"nullable\":false,\"primaryKey\":true,\"partitionKey\":false,\"comment\":\"统计日期\"},{\"columnName\":\"do_min\",\"columnType\":\"STRING\",\"nullable\":false,\"primaryKey\":true,\"partitionKey\":false,\"comment\":\"统计分钟\"},{\"columnName\":\"pv\",\"columnType\":\"BIGINT\",\"nullable\":false,\"primaryKey\":false,\"partitionKey\":false,\"comment\":\"点击量\"},{\"columnName\":\"uv\",\"columnType\":\"BIGINT\",\"nullable\":false,\"primaryKey\":false,\"partitionKey\":false,\"comment\":\"一天内同个访客多次访问仅计算一个UV\"},{\"columnName\":\"currenttime\",\"columnType\":\"TIMESTAMP\",\"nullable\":false,\"primaryKey\":false,\"partitionKey\":false,\"comment\":\"当前时间\"}],\"metadataColumnDefinition\":null,\"computedColumnDefinition\":null,\"watermarkDefinition\":null,\"asSelectStatement\":\"SELECT  do_date,cast(DATE_FORMAT(access_time,'HH:mm') AS STRING) AS do_min,pv,uv,NOW() AS currenttime from view_total_pv_uv_min\"}",
          "properties": "{\"value.json.fail-on-missing-field\": false}"
        }
      }
    ],
    "paths": [
      {
        "from": "JsonStringParser1",
        "outport": "",
        "inport": "",
        "to": "WriteToKafka1"
      },
      {
        "from": "WriteToKafka1",
        "outport": "",
        "inport": "",
        "to": "ReadFromKafka1"
      },
      {
        "from": "ReadFromKafka1",
        "outport": "",
        "inport": "",
        "to": "SQLExecute1"
      },
      {
        "from": "SQLExecute1",
        "outport": "",
        "inport": "",
        "to": "WriteToUpsertKafka1"
      }
    ]
  }
}
示例说明
  1. 通过JsonStringParser将给定的json字符串解析,并输出到下游,通过WriteToKafka组件将数据写入到kafka的user_ip_pv topic中;

  2. 通过ReadFromKafka组件从user_ip_pv topic中读取数据;

  3. 使用SQLExecute组件执行创建视图view_total_pv_uv_min的语句;

  4. 使用WriteToUpsertKafka定义upsert kafka table,并使用tableDefinition属性中定义的asSelectStatement执行语句,将结果写入kafka。

tableDefinition属性结构
{
  "catalogName": null,
  "dbname": null,
  "tableName": "result_total_pv_uv_min",
  "ifNotExists": true,
  "physicalColumnDefinition": [
    {
      "columnName": "do_date",
      "columnType": "STRING",
      "nullable": false,
      "primaryKey": true,
      "partitionKey": false,
      "comment": "统计日期"
    },
    {
      "columnName": "do_min",
      "columnType": "STRING",
      "nullable": false,
      "primaryKey": true,
      "partitionKey": false,
      "comment": "统计分钟"
    },
    {
      "columnName": "pv",
      "columnType": "BIGINT",
      "nullable": false,
      "primaryKey": false,
      "partitionKey": false,
      "comment": "点击量"
    },
    {
      "columnName": "uv",
      "columnType": "BIGINT",
      "nullable": false,
      "primaryKey": false,
      "partitionKey": false,
      "comment": "一天内同个访客多次访问仅计算一个UV"
    },
    {
      "columnName": "currenttime",
      "columnType": "TIMESTAMP",
      "nullable": false,
      "primaryKey": false,
      "partitionKey": false,
      "comment": "当前时间"
    }
  ],
  "metadataColumnDefinition": null,
  "computedColumnDefinition": null,
  "watermarkDefinition": null,
  "asSelectStatement": "SELECT  do_date,cast(DATE_FORMAT(access_time,'HH:mm') AS STRING) AS do_min,pv,uv,NOW() AS currenttime from view_total_pv_uv_min"
}

演示DEMO

演示案例参考

实时数仓|以upsert的方式读写Kafka数据—Flink1.12为例_upsert-connect 时间周期-CSDN博客

你可能感兴趣的:(PiflowX,大数据,spark,flink,数据库,hdfs,etl)