以upsert方式往Kafka topic中写数据。
flink
Streaming Upsert Mode
kafka
Inport:默认端口
outport:默认端口
名称 | 展示名称 | 默认值 | 允许值 | 是否必填 | 描述 | 例子 |
---|---|---|---|---|---|---|
kafka_host | KAFKA_HOST | “” | 无 | 是 | 逗号分隔的Kafka broker列表。 | 127.0.0.1:9092 |
topic | TOPIC | “” | 无 | 是 | 用于写入Kafka topic名称。 | topic-1 |
tableDefinition | TableDefinition | “” | 无 | 是 | Flink table定义。 | |
key_format | keyFormat | “” | Set(“json”, “csv”, “avro”) | 是 | 用于对Kafka消息中key部分序列化的格式。key字段由PRIMARY KEY语法指定。 | json |
value_format | ValueFormat | “” | Set(“json”, “csv”, “avro”) | 是 | 用于对Kafka消息中value部分序列化的格式 | json |
value_fields_include | ValueFieldsInclude | ALL | Set(“ALL”, “EXCEPT_KEY”) | 是 | 控制哪些字段应该出现在 value 中。可取值: "ALL:消息的 value 部分将包含 schema 中所有的字段包括定义为主键的字段。 "EXCEPT_KEY:记录的 value 部分包含 schema 的所有字段,定义为主键的字段除外。 |
ALL |
key_fields_prefix | KeyFieldsPrefix | “” | 无 | 否 | 为所有消息键(Key)格式字段指定自定义前缀,以避免与消息体(Value)格式字段重名。默认情况下前缀为空。 如果定义了前缀,表结构和配置项 ‘key.fields’ 都需要使用带前缀的名称。当构建消息键格式字段时,前缀会被移除, 消息键格式将会使用无前缀的名称。请注意该配置项要求必须将 ‘value.fields-include’ 配置为 ‘EXCEPT_KEY’。 | |
sink_parallelism | SinkParallelism | “” | 无 | 否 | 定义upsert-kafka sink算子的并行度。默认情况下,由框架确定并行度,与上游链接算子的并行度保持一致。 | |
sink_buffer_flush_max_rows | SinkBufferFlushMaxRows | “” | 无 | 否 | 缓存刷新前,最多能缓存多少条记录。当sink收到很多同key上的更新时,缓存将保留同key的最后一条记录,因此sink缓存能帮助减少发往Kafka topic的数据量,以及避免发送潜在的tombstone消息。 可以通过设置为 ‘0’ 来禁用它默认,该选项是未开启的。注意,如果要开启sink缓存,需要同时设置 ‘sink.buffer-flush.max-rows’ 和 'sink.buffer-flush.interval两个选项为大于零的值。 | |
sink_buffer_flush_interval | SinkBufferFlushInterval | “” | 无 | 否 | 该选项可以传递任意的 Kafka 参数。选项的后缀名必须匹配定义在 Kafka 参数文档中的参数名。 Flink 会自动移除 选项名中的 “properties.” 前缀,并将转换后的键名以及值传入 KafkaClient。 例如,你可以通过 ‘properties.allow.auto.create.topics’ = ‘false’ 来禁止自动创建 topic。 但是,某些选项,例如’key.deserializer’ 和 ‘value.deserializer’ 是不允许通过该方式传递参数,因为 Flink 会重写这些参数的值。 | |
properties | PROPERTIES | “” | 无 | 否 | Kafka source连接器其他配置 |
演示实时统计网页pv和uv的总量。
{
"flow": {
"name": "UpsertKafkaTest",
"uuid": "1234",
"stops": [
{
"uuid": "0000",
"name": "JsonStringParser1",
"bundle": "cn.piflow.bundle.flink.json.JsonStringParser",
"properties": {
"content": "[{\"user_id\":\"1\",\"client_ip\":\"192.168.12.1\",\"client_info\":\"phone\",\"page_code\":\"1001\",\"access_time\":\"2021-01-08 11:32:24\",\"dt\":\"2021-01-08\"},{\"user_id\":\"1\",\"client_ip\":\"192.168.12.1\",\"client_info\":\"phone\",\"page_code\":\"1201\",\"access_time\":\"2021-01-08 11:32:55\",\"dt\":\"2021-01-08\"},{\"user_id\":\"2\",\"client_ip\":\"192.165.12.1\",\"client_info\":\"pc\",\"page_code\":\"1031\",\"access_time\":\"2021-01-08 11:32:59\",\"dt\":\"2021-01-08\"},{\"user_id\":\"1\",\"client_ip\":\"192.168.12.1\",\"client_info\":\"phone\",\"page_code\":\"1101\",\"access_time\":\"2021-01-08 11:33:24\",\"dt\":\"2021-01-08\"},{\"user_id\":\"3\",\"client_ip\":\"192.168.10.3\",\"client_info\":\"pc\",\"page_code\":\"1001\",\"access_time\":\"2021-01-08 11:33:30\",\"dt\":\"2021-01-08\"},{\"user_id\":\"1\",\"client_ip\":\"192.168.12.1\",\"client_info\":\"phone\",\"page_code\":\"1001\",\"access_time\":\"2021-01-08 11:34:24\",\"dt\":\"2021-01-08\"}]",
"schema": "user_id:STRING,client_ip:STRING,client_info:STRING,page_code:STRING,access_time:TIMESTAMP,dt:STRING"
}
},
{
"uuid": "1111",
"name": "WriteToKafka1",
"bundle": "cn.piflow.bundle.flink.kafka.WriteToKafka",
"properties": {
"kafka_host": "hadoop01:9092",
"topic": "user_ip_pv",
"tableDefinition": "{\"catalogName\":null,\"dbname\":null,\"tableName\":null,\"ifNotExists\":true,\"physicalColumnDefinition\":[{\"columnName\":\"user_id\",\"columnType\":\"STRING\",\"comment\":\"用户ID\"},{\"columnName\":\"client_ip\",\"columnType\":\"STRING\",\"comment\":\"客户端IP\"},{\"columnName\":\"client_info\",\"columnType\":\"STRING\",\"comment\":\"设备机型信息\"},{\"columnName\":\"page_code\",\"columnType\":\"STRING\",\"comment\":\"页面代码\"},{\"columnName\":\"access_time\",\"columnType\":\"TIMESTAMP\",\"comment\":\"请求时间\"},{\"columnName\":\"dt\",\"columnType\":\"STRING\",\"comment\":\"时间分区天\"}],\"metadataColumnDefinition\":null,\"computedColumnDefinition\":null,\"watermarkDefinition\":null}",
"format": "json",
"properties": "{\"json.ignore-parse-errors\":\"true\"}"
}
},
{
"uuid": "2222",
"name": "ReadFromKafka1",
"bundle": "cn.piflow.bundle.flink.kafka.ReadFromKafka",
"properties": {
"kafka_host": "hadoop01:9092",
"topic": "user_ip_pv",
"group": "test",
"startup_mode": "earliest-offset",
"tableDefinition": "{\"catalogName\":null,\"dbname\":null,\"tableName\":\"source_ods_fact_user_ip_pv\",\"ifNotExists\":true,\"physicalColumnDefinition\":[{\"columnName\":\"user_id\",\"columnType\":\"STRING\",\"comment\":\"用户ID\"},{\"columnName\":\"client_ip\",\"columnType\":\"STRING\",\"comment\":\"客户端IP\"},{\"columnName\":\"client_info\",\"columnType\":\"STRING\",\"comment\":\"设备机型信息\"},{\"columnName\":\"page_code\",\"columnType\":\"STRING\",\"comment\":\"页面代码\"},{\"columnName\":\"access_time\",\"columnType\":\"TIMESTAMP\",\"comment\":\"请求时间\"},{\"columnName\":\"dt\",\"columnType\":\"STRING\",\"comment\":\"时间分区天\"}],\"metadataColumnDefinition\":null,\"computedColumnDefinition\":null,\"watermarkDefinition\":null}",
"format": "json",
"properties": "{}"
}
},
{
"uuid": "3333",
"name": "SQLExecute1",
"bundle": "cn.piflow.bundle.flink.common.SQLExecute",
"properties": {
"sql": "CREATE VIEW view_total_pv_uv_min AS SELECT dt AS do_date, count(client_ip) AS pv, count(DISTINCT client_ip) AS uv,max(access_time) AS access_time FROM source_ods_fact_user_ip_pv GROUP BY dt;"
}
},
{
"uuid": "4444",
"name": "WriteToUpsertKafka1",
"bundle": "cn.piflow.bundle.flink.kafka.WriteToUpsertKafka",
"properties": {
"kafka_host": "hadoop01:9092",
"topic": "result_total_pv_uv_min",
"key_format": "json",
"value_format": "json",
"value_fields_include": "ALL",
"tableDefinition": "{\"catalogName\":null,\"dbname\":null,\"tableName\":\"result_total_pv_uv_min\",\"ifNotExists\":true,\"physicalColumnDefinition\":[{\"columnName\":\"do_date\",\"columnType\":\"STRING\",\"nullable\":false,\"primaryKey\":true,\"partitionKey\":false,\"comment\":\"统计日期\"},{\"columnName\":\"do_min\",\"columnType\":\"STRING\",\"nullable\":false,\"primaryKey\":true,\"partitionKey\":false,\"comment\":\"统计分钟\"},{\"columnName\":\"pv\",\"columnType\":\"BIGINT\",\"nullable\":false,\"primaryKey\":false,\"partitionKey\":false,\"comment\":\"点击量\"},{\"columnName\":\"uv\",\"columnType\":\"BIGINT\",\"nullable\":false,\"primaryKey\":false,\"partitionKey\":false,\"comment\":\"一天内同个访客多次访问仅计算一个UV\"},{\"columnName\":\"currenttime\",\"columnType\":\"TIMESTAMP\",\"nullable\":false,\"primaryKey\":false,\"partitionKey\":false,\"comment\":\"当前时间\"}],\"metadataColumnDefinition\":null,\"computedColumnDefinition\":null,\"watermarkDefinition\":null,\"asSelectStatement\":\"SELECT do_date,cast(DATE_FORMAT(access_time,'HH:mm') AS STRING) AS do_min,pv,uv,NOW() AS currenttime from view_total_pv_uv_min\"}",
"properties": "{\"value.json.fail-on-missing-field\": false}"
}
}
],
"paths": [
{
"from": "JsonStringParser1",
"outport": "",
"inport": "",
"to": "WriteToKafka1"
},
{
"from": "WriteToKafka1",
"outport": "",
"inport": "",
"to": "ReadFromKafka1"
},
{
"from": "ReadFromKafka1",
"outport": "",
"inport": "",
"to": "SQLExecute1"
},
{
"from": "SQLExecute1",
"outport": "",
"inport": "",
"to": "WriteToUpsertKafka1"
}
]
}
}
通过JsonStringParser
将给定的json字符串解析,并输出到下游,通过WriteToKafka
组件将数据写入到kafka的user_ip_pv
topic中;
通过ReadFromKafka组件从user_ip_pv
topic中读取数据;
使用SQLExecute
组件执行创建视图view_total_pv_uv_min
的语句;
使用WriteToUpsertKafka
定义upsert kafka table,并使用tableDefinition
属性中定义的asSelectStatement
执行语句,将结果写入kafka。
{
"catalogName": null,
"dbname": null,
"tableName": "result_total_pv_uv_min",
"ifNotExists": true,
"physicalColumnDefinition": [
{
"columnName": "do_date",
"columnType": "STRING",
"nullable": false,
"primaryKey": true,
"partitionKey": false,
"comment": "统计日期"
},
{
"columnName": "do_min",
"columnType": "STRING",
"nullable": false,
"primaryKey": true,
"partitionKey": false,
"comment": "统计分钟"
},
{
"columnName": "pv",
"columnType": "BIGINT",
"nullable": false,
"primaryKey": false,
"partitionKey": false,
"comment": "点击量"
},
{
"columnName": "uv",
"columnType": "BIGINT",
"nullable": false,
"primaryKey": false,
"partitionKey": false,
"comment": "一天内同个访客多次访问仅计算一个UV"
},
{
"columnName": "currenttime",
"columnType": "TIMESTAMP",
"nullable": false,
"primaryKey": false,
"partitionKey": false,
"comment": "当前时间"
}
],
"metadataColumnDefinition": null,
"computedColumnDefinition": null,
"watermarkDefinition": null,
"asSelectStatement": "SELECT do_date,cast(DATE_FORMAT(access_time,'HH:mm') AS STRING) AS do_min,pv,uv,NOW() AS currenttime from view_total_pv_uv_min"
}
演示DEMO
实时数仓|以upsert的方式读写Kafka数据—Flink1.12为例_upsert-connect 时间周期-CSDN博客