关于简单的数据可视化

1. 安装数据可视化必要的openpyxl、pandas,matplotlib等软件包

关于简单的数据可视化_第1张图片

关于简单的数据可视化_第2张图片 使用清华源,命令如下:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn pandas

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn matplotlib

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn openpyxl

安装成功后,可以进入下一步。

2. 这里新建一个Excel表格方便说明一下:

# 导包
import openpyxl
# 创建工作簿
workbook = openpyxl.Workbook()
# 选择默认的活动工作表
sheet = workbook.active
# 添加数据
data = [
        ['Name','Age','Gender'],
        ['Mike','25','Male'],
        ['Alice','26','Female'],
        ['Bob','25','Male'],
        ['John','29','Male'],
        ['Charlie','30','Male'],
        ['Anna','25','Female'],
        ]
for row in data:
    sheet.append(row)
# 保存工作簿到文件,完成创建
workbook.save("demo.xlsx")

运行代码生成如下表格:

关于简单的数据可视化_第3张图片

3. 对性别进行可视化操作--生成饼图:

# 导包
import pandas as pd
import matplotlib.pyplot as plt

# 读取Excel文件
df = pd.read_excel("demo.xlsx")

# 统计性别的数量
gender_counts = df['Gender'].value_counts()

# 提取性别作为标签
genders = gender_counts.index.tolist()

# 数据可视化 - 性别分布饼图
fig, ax = plt.subplots()
# pie函数用来绘制饼图
ax.pie(gender_counts, labels=genders, autopct='%1.1f%%', startangle=90)
ax.axis('equal')  # 确保饼图为正圆形
plt.title('Gender Distribution')
plt.show()

运行结果如下图所示:

关于简单的数据可视化_第4张图片

 4. 对姓名和年龄进行可视化操作--生成柱状图:

# 导包
import pandas as pd
import matplotlib.pyplot as plt

# 读取Excel文件
file_path = 'demo.xlsx'  # 请将这里替换为你的Excel文件的路径
df = pd.read_excel(file_path, engine='openpyxl')

# 查看表格数据
print(df.head())

# 绘制年龄的条形图
plt.figure(figsize=(10, 5))
plt.bar(df['Name'], df['Age'])
# x轴 y轴命名
plt.xlabel('Name')
plt.ylabel('Age')
# 表名
plt.title('Age by Name')
plt.show()

运行结果如下:

关于简单的数据可视化_第5张图片

关于简单的数据可视化_第6张图片

 5. 对表格数据进行可视化操作--生成散点图:

# 导包
import pandas as pd
import matplotlib.pyplot as plt

# 读取Excel文件
file_path = 'demo.xlsx'  # 将文件名替换为你的Excel文件的路径
df = pd.read_excel(file_path, engine='openpyxl')

# 确保数据包含'Name', 'Age', 和 'Gender'列
if 'Name' in df.columns and 'Age' in df.columns and 'Gender' in df.columns:
    # 创建散点图
    plt.scatter(df['Age'], df['Name'])
    plt.xlabel('Age')
    plt.ylabel('Name')
    plt.title('Scatter Plot')
    plt.show()
else:
    print("数据表中缺少'Name', 'Age', 或 'Gender'列。")

运行结果如下:

关于简单的数据可视化_第7张图片

 6. 对年龄数据进行可视化操作--生成箱线图: 

# 导包
import pandas as pd
import matplotlib.pyplot as plt

# 读取Excel文件
file_path = 'demo.xlsx'  # 将文件名替换为你的Excel文件的路径
df = pd.read_excel(file_path, engine='openpyxl')

# 绘制箱线图
plt.figure(figsize=(10, 5))
plt.boxplot(df['Age'])
plt.title('Box Plot of Age')
plt.xlabel('Name')
plt.ylabel('Age')
plt.show()

 运行结果如下:

关于简单的数据可视化_第8张图片 

你可能感兴趣的:(Python代码,笔记,信息可视化)