【算法挨揍日记】day45——474. 一和零、879. 盈利计划

 474. 一和零

474. 一和零

题目描述:

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。【算法挨揍日记】day45——474. 一和零、879. 盈利计划_第1张图片

 解题思路:

算法思路:
先将问题转化成我们熟悉的题型。
i. 在⼀些物品中「挑选」⼀些出来,然后在满⾜某个「限定条件」下,解决⼀些问题,⼤概率
是背包模型;
ii. 由于每⼀个物品都只有 1 个,因此是⼀个「01 背包问题」。
但是,我们发现这⼀道题⾥⾯有「两个限制条件」。因此是⼀个「⼆维费⽤的 01 背包问题」。那
么我们定义状态表⽰的时候,来⼀个三维 dp 表,把第⼆个限制条件加上即可。
1. 状态表⽰:
dp[i][j][k] 表⽰:从前 i 个字符串中挑选,字符 0 的个数不超过 j ,字符 1 的个数不
超过 k ,所有的选法中,最⼤的⻓度。
2. 状态转移⽅程:
线性 dp 状态转移⽅程分析⽅式,⼀般都是「根据最后⼀步」的状况,来分情况讨论。为了⽅便
叙述,我们记第 i 个字符中,字符 0 的个数为 a ,字符 1 的个数为 b
i. 不选第 i 个字符串:相当于就是去前 i - 1 个字符串中挑选,并且字符 0 的个数不超
j ,字符 1 的个数不超过 k 。此时的最⼤⻓度为 dp[i][j][k] = dp[i - 1]
[j][k]
ii. 选择第 i 个字符串:那么接下来我仅需在前 i - 1 个字符串⾥⾯,挑选出来字符 0
个数不超过 j - a ,字符 1 的个数不超过 k - b 的最⻓⻓度,然后在这个⻓度后⾯加
上字符串 i 即可。。此时 dp[i][j][k] = dp[i - 1][j - a][k - b] + 1
但是这种状态不⼀定存在,因此需要特判⼀下。
综上,状态转移⽅程为: dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j - a]
[k - b] + 1)
3. 初始化:
当没有字符串的时候,没有⻓度,因此初始化为 0 即可。
4. 填表顺序:
保证第⼀维的循环「从⼩到⼤」即可。
5. 返回值:
根据「状态表⽰」,我们返回 dp[len][m][n]
其中 len 表⽰字符串数组的⻓度。
6. 空间优化:
所有的「背包问题」,都可以进⾏空间上的优化。
对于「⼆维费⽤的 01 背包」类型的,我们的优化策略是:
i. 删掉第⼀维;
ii. 修改第⼆层以及第三层循环的遍历顺序即可

解题代码:

class Solution {
public:
    int f(string s,char ch)
    {
        int ret=0;
        for(int i=0;i<=s.size();i++)
            if(s[i]==ch)    ret++;
        return ret;
    }
    int findMaxForm(vector& strs, int m, int n) {
        int len=strs.size();
        vector>>dp(len+1,vector>(m+1,vector(n+1)));
        for(int i=1;i<=len;i++)
        {
            for(int j=0;j<=m;j++)
            {
                for(int k=0;k<=n;k++)
                {
                    dp[i][j][k]=dp[i-1][j][k];
                    int a=f(strs[i-1],'0');//0的个数
                    int b=f(strs[i-1],'1');//1的个数
                    if(j>=a&&k>=b)
                    dp[i][j][k]=max(dp[i][j][k],dp[i-1][j-a][k-b]+1);
                }
            }
        }
        return dp[len][m][n];
    }
};

 879. 盈利计划

879. 盈利计划

题目描述:

集团里有 n 名员工,他们可以完成各种各样的工作创造利润。

第 i 种工作会产生 profit[i] 的利润,它要求 group[i] 名成员共同参与。如果成员参与了其中一项工作,就不能参与另一项工作。

工作的任何至少产生 minProfit 利润的子集称为 盈利计划 。并且工作的成员总数最多为 n 。

有多少种计划可以选择?因为答案很大,所以 返回结果模 10^9 + 7 的值

 【算法挨揍日记】day45——474. 一和零、879. 盈利计划_第2张图片

解题思路:

算法思路:
这道题⽬⾮常难读懂,但是如果结合例⼦多读⼏遍,你就会发现是⼀个经典的「⼆维费⽤的背包问
题」。因此我们可以仿照「⼆维费⽤的背包」来定义状态表⽰。
1. 状态表⽰:
dp[i][j][k] 表⽰:从前 i 个计划中挑选,总⼈数不超过 j ,总利润⾄少为 k ,⼀共有多
少种选法。
注意注意注意,这道题⾥⾯出现了⼀个「⾄少」,和我们之前做过的背包问题不⼀样。因此,我们
在分析「状态转移⽅程」的时候要结合实际情况考虑⼀下。
2. 状态转移⽅程:
⽼规矩,根据「最后⼀个位置」的元素,结合题⽬的要求,我们有「选择」最后⼀个元素或者「不
选择」最后⼀个元素两种策略:
i. 不选 i 位置的计划:那我们只能去前 i - 1 个计划中挑选,总⼈数不超过 j ,总利润
⾄少为 k 。此时⼀共有 dp[i - 1][j][k] 种选法;
ii. 选择 i 位置的计划:那我们在前 i - 1 个计划中挑选的时候,限制就变成了,总⼈数不
超过 j - g[i] ,总利润⾄少为 k - p[i] 。此时⼀共有 dp[i - 1][j - g[i]]
[k - p[i]]
第⼆种情况下有两个细节需要注意:
1. j - g[i] < 0 :此时说明 g[i] 过⼤,也就是⼈数过多。因为我们的状态表⽰要
求⼈数是不能超过 j 的,因此这个状态是不合法的,需要舍去。
2. k - p[i] < 0 :此时说明 p[i] 过⼤,也就是利润太⾼。但是利润⾼,不正是我
们想要的嘛?所以这个状态「不能舍去」。但是问题来了,我们的 dp 表是没有负数的
下标的,这就意味着这些状态我们⽆法表⽰。其实,根本不需要负的下标,我们根据实
际情况来看,如果这个任务的利润已经能够达标了,我们仅需在之前的任务中,挑选出
来的利润⾄少为 0 就可以了。因为实际情况不允许我们是负利润,那么负利润就等价
于利润⾄少为 0 的情况。所以说这种情况就等价于 dp[i][j][0] ,我们可以对 k
- p[i] 的结果与 0 取⼀个 max
综上,我们的状态转移⽅程为:
dp[i][j][k] = dp[i - 1][j][k] + dp[i - 1][j - g[i - 1]][max(0, k
- p[i - 1])]
3. 初始化:
当没有任务的时候,我们的利润为 0 ,此时⽆论⼈数限制为多少,我们都能找到⼀个「空集」的
⽅案。
因此初始化 dp[0][j][0] 的位置为 1 ,其中 0 <= j <= n
4. 填表顺序:
根据「状态转移⽅程」,我们保证 i 从⼩到⼤即可。
5. 返回值:
根据「状态表⽰」,我们返回 dp[len][m][n]
其中 len 表⽰字符串数组的⻓度。
6. 空间优化:
所有的「背包问题」,都可以进⾏空间上的优化。
对于「⼆维费⽤的 01 背包」类型的,我们的优化策略是:
i. 删掉第⼀维;
ii. 修改第⼆层以及第三层循环的遍历顺序即可。

解题代码:

class Solution {
public:
    int profitableSchemes(int n, int minProfit, vector& group, vector& profit) {
        const int MOD=1e9+7;
        int len=group.size();
        vector>>dp(len+1,vector>(n+1,vector(minProfit+1)));
        for(int j=0;j<=n;j++)   dp[0][j][0]=1;
        for(int i=1;i<=len;i++)
        {
            for(int j=0;j<=n;j++)
            {
                for(int k=0;k<=minProfit;k++)
                {
                    dp[i][j][k]+=dp[i-1][j][k];
                    if(j>=group[i-1])   
                        dp[i][j][k]+=dp[i-1][j-group[i-1]][max(k-profit[i-1],0)];
                    dp[i][j][k]%=MOD;
                }
            }
        }
        return dp[len][n][minProfit];
    }
};

你可能感兴趣的:(算法挨揍日记,Leetcode,动态规划,算法)