- 点云从入门到精通技术详解100篇-基于点云与图像纹理的 道路识别(续)
格图素书
计算机视觉人工智能
目录3.1.2图像滤波去噪3.2道路纹理特征提取3.3基于超像素分割的图像特征表达3.3.1SLIC算法3.3.2改进SLIC算法的超像素特征图获取3.4基于改进区域生长算法的道路区域分割3.4.1种子点的选择3.4.2生长准则3.4.3道路区域后处理3.5实验结果分析4基于激光雷达点云的道路识别4.1点云预处理4.1.1点云数据解析4.1.2点云数据筛选4.1.3点云坐标转换4.2基于雷达图像的
- Pytorch:以CIFAR-10分类为例,给出了神经网络的训练流程
Xiao_Ya__
深度学习pytorchpytorch分类神经网络
下面给出了神经网络的训练流程,包括数据加载与预处理、网络定义、损失函数和优化器定义、网络训练和网络测试。importtorchastimporttorchvisionastvimporttorchvision.transformsastransformsfromtorchvision.transformsimportToPILImageimporttorch.nnasnnimporttorch.n
- 一段电机转子表磁数据谐波幅值计算的MATLAB代码(需要自取)
Deepdaq
matlab开发语言
clcclearalldata=xlsread('data');%Excel表格data数据即为测量的表磁数据[M1,N1]=size(data);%行即为采集的数据点,列即为层数%设置采样率为数据点数fs=M1;pole=12;%电机为12对极fori1=1:N1data_1=data(:,i1);data_1_fft=fft(data_1);%fft之后求绝对值及平均能量data_1_fft_
- MySQL 数据库作发布系统的存储,一天五万条以上的增量, 预 计运维三年,怎么优化?思维导图 代码示例(java 架构)
用心去追梦
数据库mysql运维
对于一个每天有五万条以上增量、预计运维三年的MySQL发布系统,优化和规划是非常重要的。这不仅涉及到数据库本身的性能优化,还包括架构设计、硬件选择、监控与维护等多个方面。以下是一些建议和策略:优化策略数据库架构设计分库分表(Sharding):将数据分散到多个数据库或表中,减轻单个实例的压力。读写分离:使用主从复制,将读操作分流到从服务器上,减少主服务器负载。缓存机制:利用Redis或Memcac
- 梯度累加(结合DDP)梯度检查点
糖葫芦君
LLM算法人工智能大模型深度学习
梯度累加目的梯度累积是一种训练神经网络的技术,主要用于在内存有限的情况下处理较大的批量大小(batchsize)。通常,较大的批量可以提高训练的稳定性和效率,但受限于GPU或TPU的内存,无法一次性加载大批量数据。梯度累积通过多次前向传播和反向传播累积梯度,然后一次性更新模型参数,从而模拟大批量训练的效果。总结:显存限制:GPU/TPU显存有限,无法一次性加载大批量数据。训练稳定性:大批量训练通常
- 1985-2023 年 各省、地级市数字经济专利数据
经管数据集
数据分析
数据来源:CNRDS数据库包括Excel数据文件+字段说明书+数据库说明书具体字段:Province[省份]-省份Pftn[地市]-地市Year[会计年度]-会计年度Noderiafty[当年申请的数字经济相关发明数量]-当年申请的数字经济相关发明数量,单位:个Noderiaity[当年授权的数字经济相关发明数量]-当年授权的数字经济相关发明数量,单位:个Noderumap[当年申请的数字经济相关
- 支持向量机(Support Vector Machine,SVM)
不易撞的网名
支持向量机算法机器学习
支持向量机(SupportVectorMachine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是寻找一个决策边界或超平面,使得两类样本之间的间隔最大化。这个间隔被定义为支持向量到超平面的最短距离,而支持向量就是那些恰好位于间隔边缘上的训练样本点。线性可分情况下的SVM假设我们有一组训练数据(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2
- 核货宝:支持二次开发的移动订货系统分享
核货宝订货系统
移动订货系统开源订货系统批发订货商城移动订货系统
在快节奏的商业环境中,企业对高效、便捷的订货管理系统需求日益迫切。核货宝移动订货系统凭借其强大的功能和灵活的二次开发特性,成为众多企业优化订货流程、提升业务效率的得力助手。一、进销存管理(一)功能内容库存管理:对库存进行全方位实时监控,涵盖库存数量、库存成本以及库存位置等信息。系统支持库存盘点功能,定期或不定期对库存进行盘点,确保账实相符。当库存发生变动时,如商品入库、出库,系统自动更新库存数据。
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- 探索 IMA:搭建个人知识库的得力助手
东锋1.3
开发与应用ima个人知识库知识库
现在好多人都在尝试用DeepSeek做本地部署,各种详细的部署教程也争先恐后的出现。教程虽好,但对于一般的人来讲操作还是存在一定的难度,比如说对硬件的要求高,部署的过程较为复杂。前段时间我关注到腾讯推出的一款叫ima的应用,恰好能跳过这些繁琐的过程,只需要下载客户端,就能轻松搭建自己的知识库。如果大家对上传到知识库中的数据资料没有什么隐私或保密的顾虑,可以尝试一些ima来搭建自己的知识库。在安装i
- 架构演进史
三花学编程
架构架构java微服务
软件架构是软件工程的基石,它不仅影响着系统的性能、可维护性和可扩展性,也直接关系到开发团队的效率和项目的成功。随着技术的不断发展和业务需求的变化,软件架构经历了多个阶段的演进。本文将详细探讨这些阶段及其背后的驱动因素。1.单体架构时代1.1定义与特点单体架构是指将所有功能模块打包在一个独立的应用程序中。早期的计算机应用程序大多采用这种架构,所有的代码、数据和资源都集中在一个地方。1.2优点简单性:
- 跟着小K开始零基础Python量化分析之旅 2: 初试身手 —— Python基础与神秘股票清单
山海青风
python
第二章:初试身手——Python基础与神秘股票清单在这一章中,我们将跟随小K的脚步,开启Python的初探之旅。小K刚刚踏入量化投资的世界,就收到了前辈神秘发送的一份文件——“神秘股票清单.csv”。前辈告诉他,只有牢牢掌握Python的基础语法,才能游刃有余地处理金融数据,进一步深入量化分析的奥秘。接下来,就让我们一起体验小K如何用Python完成这个第一个小任务,从而收获满满的成就感吧!故事情
- 跟着小K开始零基础Python量化分析之旅 3: 初探数据世界 —— Pandas与数据清洗的武林秘笈
山海青风
python
第三章:初探数据世界——Pandas与数据清洗的武林秘笈在量化江湖中,数据正如武林秘籍中的内功心法,必须先打好基础,才能施展后续高深武技。小K这次获得了一份历史股票交易数据,但初看之下却是一团乱麻:缺失值、重复记录、日期格式不统一……前辈笑着说:“兄弟,若想踏入量化之路,先要学会如何把这‘脏数据’炼成一手干净的‘真气’!”下面,就跟随小K的脚步,逐步揭开数据清洗的秘密,掌握Pandas的基本功法,
- OpenAI 助力数据分析中的模式识别与趋势预测
山海青风
#OpenAI数据分析信息可视化数据挖掘
数据分析师的日常工作中,发现数据中的隐藏模式和预测未来趋势是非常重要的一环。借助OpenAI的强大语言模型(如GPT-4),我们可以轻松完成这些任务,无需深厚的编程基础,也能快速上手。在本文中,我们将通过一个简单的例子,展示如何利用OpenAI模型帮助数据分析师识别模式和预测趋势,尤其是在时间序列预测(如销售、流量等)中的实际应用,并加入数据可视化来更直观地展示分析结果。一、模式识别与趋势预测的重
- Code Less, Create More丨AI FOR CODE 创意挑战赛即将开幕!
小小宇宙中微子
人工智能
在AICoding蓬勃发展的大背景下,全球开发者对智能化工具的依赖度攀升。据Gartner预测,2028年AI辅助编程渗透率将突破75%。开发者正面临着从“工具使用者”到“AI协同创新者”的身份转移。为促进AI编程技术交流与创新思维的碰撞,稀土掘金联合Trae共同发起【AIFORCODE创意挑战赛】,汇聚来自不同背景、不同经验的开发者,共同探索AI与编程结合的创意边界。扫码预约直播3月3日18:0
- 一文速通MySQL
C__C..
mysql数据库
MySQL是一种广泛使用的开源关系型数据库管理系统,它通过SQL(结构化查询语言)来管理和操作数据库。SQL语句主要分为三类:DDL(数据定义语言)、DML(数据操纵语言)和DCL(数据控制语言)。DDL(数据定义语言):功能:用于定义和修改数据库的结构常见语句:查看数据库showdatabases;新建数据库createdatabase数据库名;删除数据库dropdatabase数据库名;查看当
- Python 学习之旅:高级阶段(十七)Web 开发之模板引擎(如 Jinja2)
喜-喜
Python学习python学习前端
在Python的Web开发进程中,模板引擎是一个关键的工具,它能帮助我们将动态数据和静态的HTML结构结合起来,生成最终呈现给用户的网页。Jinja2作为Python中广泛使用的模板引擎,以其简洁的语法和强大的功能,在众多Web框架中发挥着重要作用。接下来,让我们以Flask框架为依托,深入了解Jinja2模板引擎。一、模板引擎的作用 在Web开发中,我们常常需要根据不同的用户请求,动态生成
- 揭秘波士顿房价密码:从经典数据集到线性回归实战
珠峰日记
线性回归算法回归机器学习深度学习
引言波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“HelloWorld”。和大家对房价的普遍认知相同,波士顿地区的房价受诸多因素影响。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型。在机器学习领域,预测问题是一个核心研究方向,而房价预测作为其中的经典回归问题备受关注。波士顿房价数据集包含了与波士顿地区房屋相关的多种特征信息,通过
- 0092:小明养猪的故事(C++)
王.Victoria
c++编程语言
小明养猪的故事描述话说现在猪肉价格这么贵,小明也开始了养猪生活。说来也奇怪,他养的猪一出生第二天开始就能每天中午生一只小猪,而且生下来的竟然都是母猪。不过光生小猪也不行,小明采用了一个很奇特的办法来管理他的养猪场:对于每头刚出生的小猪,在它生下第二头小猪后立马被杀掉,卖到超市里。假设在创业的第一天,小明只买了一头刚出生的小猪,请问,在第N天晚上,小明的养猪场里还存有多少头猪?输入测试数据的第一行是
- SQL中如何使用GROUP BY语句
用完记得换回去
sql数据库
GROUPBY语句在SQL中用于:将行数据根据列进行分组。当你想要对数据进行分组并对每个分组进行聚合计算(如计数、求和、平均等)时,GROUPBY非常有用。以下是基本步骤和示例:基本语法SELECTcolumn_name(s),AGGREGATE_FUNCTION(column_name)FROMtable_nameWHEREconditionGROUPBYcolumn_name(s)ORDERB
- Python酷库之旅-第三方库Pandas(021)
神奇夜光杯
pythonpandas开发语言标准库及第三方库基础知识学习与成长
目录一、用法精讲52、pandas.from_dummies函数52-1、语法52-2、参数52-3、功能52-4、返回值52-5、说明52-6、用法52-6-1、数据准备52-6-2、代码示例52-6-3、结果输出53、pandas.factorize函数53-1、语法53-2、参数53-3、功能53-4、返回值53-5、说明53-6、用法53-6-1、数据准备53-6-2、代码示例53-6-3
- 支持向量机 (Support Vector Machine, SVM)
数维学长986
支持向量机算法机器学习
支持向量机(SupportVectorMachine,SVM)支持向量机(SVM)是一种广泛应用于分类、回归分析以及异常检测的监督学习算法。它基于结构风险最小化(StructuralRiskMinimization,SRM)原则,通过寻找一个最优超平面来实现数据的分类。SVM不仅可以处理线性可分问题,也能够通过核技巧(KernelTrick)处理非线性可分问题。1.基本概念超平面:在特征空间中,S
- DeepSeek基础之机器学习
珠峰日记
机器学习ai人工智能
文章目录一、核心概念总结(一)机器学习基本定义(二)基本术语(三)假设空间(四)归纳偏好(五)“没有免费的午餐”定理(NFL定理)二、重点理解与思考(一)泛化能力的重要性(二)归纳偏好的影响(三)NFL定理的启示三、应用场景联想(一)电商推荐系统(二)医疗诊断四、机器学习的基本流程(一)问题定义(二)数据收集与预处理(三)模型选择与训练(四)模型评估与优化(五)模型部署与应用五、机器学习的挑战(一
- 计算机二级公共基础知识考点整理,超全面,超全面
zhishitu7
数据结构算法java
第一章数据结构与算法经过对部分考生的调查以及对近年真题的总结分析,笔试部分经常考查的是算法复杂度、数据结构的概念、栈、二叉树的遍历、二分法查找,读者应对此部分进行重点学习。详细重点学习知识点:1.算法的概念、算法时间复杂度及空间复杂度的概念2.数据结构的定义、数据逻辑结构及物理结构的定义3.栈的定义及其运算、线性链表的存储方式4.树与二叉树的概念、二叉树的基本性质、完全二叉树的概念、二叉树的遍历5
- The Rust Programming Language - 第15章 智能指针 - 15.1 使用Box<T>指向堆上的数据
shiyivei
#Rustrust开发语言泛型智能指针存储空间
15智能指针指针指向变量的内存地址,除了引用数据没有其它的功能,因此没有运行开销智能指针是一类数据结构,虽然表现类似指针,但是拥有额外的元数据和功能。Rust的智能指针提供了包含引用之外的其他功能,但是指针这个概念并不是Rust独有的在Rust中,普通指针只是借用数据,而智能指针还拥有它们指向的数据,比如String和Vec,它们都是智者指针,它们拥有数据并且可以被修改。它们也带有元数据(比如容量
- java23种设计模式-单例模式
千里码!
后端技术设计模式#Java单例模式设计模式
单例模式(SingletonPattern)学习笔记定义单例模式属于创建型设计模式,确保一个类只有一个实例,并提供全局访问点。是Java中最简单但实现最复杂的设计模式。适用场景需要控制资源访问(如数据库连接池)全局配置对象日志记录器设备管理器(如打印机服务)缓存系统线程池/连接池管理模式结构类图Singleton-staticinstance:Singleton-Singleton()+stati
- 1/30每日一题
转码的小石
服务器运维
从输入URL到页面展示到底发生了什么?1.输入URL与浏览器解析当你在浏览器地址栏输入URL并按下回车,浏览器首先会解析这个URL(统一资源定位符),比如https://www.example.com。浏览器会解析这个URL中的不同部分:协议(如:http或https):决定了数据传输的方式和安全性。域名(如:www.example.com):确定请求的目标服务器。路径(如:/index.html
- ERP : 产出控制
ZhuCheng Xie
ERP
控制的要素对任何功能的控制要求下列四个要素:1、标准或计划,对照它去度量实际数据,可知该功能何时达标。2、反馈,它报告要同计划去作比较的实际绩效。3、某种容差限度,它便得系统对于最终将被相反的变化所抵销的微小变化不作反应但它将允许系统敏捷地去认出显著变化并要求校正行动。4、具体的校正行动,当该功能失控时可采取它使功能返回到计划,或作为最后的一着,对计划的修正。在产出控制,标准就是第9章讨论过的能力
- 基于STM32的智能门禁系统设计
STM32发烧友
stm32嵌入式硬件单片机
引言本项目基于STM32微控制器设计了一个智能门禁系统,通过集成多个传感器模块和控制设备,实现对门禁系统的自动化管理与控制。该系统能够通过RFID卡、密码输入、以及指纹传感器等多种方式对进出人员进行验证,并结合LCD显示屏提供实时信息反馈。项目涉及硬件设计、数据处理和多重身份验证的实现,适用于办公室、小区等需要门禁管理的场景。本文将详细介绍系统的设计思路和具体实现步骤。环境准备1.硬件设备STM3
- Rust中的智能指针:Box<T> Rc<T> Arc<T> Cell<T> RefCell<T> Weak<T>
supeerzdj
rust算法网络
Rust中的智能指针是什么智能指针(smartpointers)是一类数据结构,是拥有数据所有权和额外功能的指针。是指针的进一步发展指针(pointer)是一个包含内存地址的变量的通用概念。这个地址引用,或”指向”(pointsat)一些其他数据。引用以&符号为标志并借用了他们所指向的值。除了引用数据没有任何其他特殊功能。它们也没有任何额外开销,所以在Rust中应用得最多。智能指针是Rust中一种
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23