【C++】基于C++11的线程池:threadpool

1、参考

作者博客:https://www.cnblogs.com/lzpong/p/6397997.html
源码:https://github.com/lzpong/threadpool

2、源码

原理:利用生产者-消费者模型,管理一个任务队列,一个线程队列,然后每次取一个任务分配给一个线程去做,循环往复。

#pragma once
#ifndef THREAD_POOL_H
#define THREAD_POOL_H

#include 
#include 
#include 
#include 
#include 

namespace std
{
//线程池最大容量,应尽量设小一点
#define  THREADPOOL_MAX_NUM 16
//线程池是否可以自动增长(如果需要,且不超过 THREADPOOL_MAX_NUM)
//#define  THREADPOOL_AUTO_GROW

//线程池,可以提交变参函数或拉姆达表达式的匿名函数执行,可以获取执行返回值
//不直接支持类成员函数, 支持类静态成员函数或全局函数,Opteron()函数等
class threadpool
{
	unsigned short _initSize;       //初始化线程数量
	using Task = function<void()>; //定义类型
	vector<thread> _pool;          //线程池
	queue<Task> _tasks;            //任务队列
	mutex _lock;                   //任务队列同步锁
#ifdef THREADPOOL_AUTO_GROW
	mutex _lockGrow;               //线程池增长同步锁
#endif // !THREADPOOL_AUTO_GROW
	condition_variable _task_cv;   //条件阻塞
	atomic<bool> _run{ true };     //线程池是否执行
	atomic<int>  _idlThrNum{ 0 };  //空闲线程数量

public:
	inline threadpool(unsigned short size = 4) { _initSize = size; addThread(size); }
	inline ~threadpool()
	{
		_run=false;
		_task_cv.notify_all(); // 唤醒所有线程执行
		for (thread& thread : _pool) {
			//thread.detach(); // 让线程“自生自灭”
			if (thread.joinable())
				thread.join(); // 等待任务结束, 前提:线程一定会执行完
		}
	}

public:
	// 提交一个任务
	// 调用.get()获取返回值会等待任务执行完,获取返回值
	// 有两种方法可以实现调用类成员,
	// 一种是使用   bind: .commit(std::bind(&Dog::sayHello, &dog));
	// 一种是用   mem_fn: .commit(std::mem_fn(&Dog::sayHello), this)
	template<class F, class... Args>
	auto commit(F&& f, Args&&... args) -> future<decltype(f(args...))>
	{
		if (!_run)    // stoped ??
			throw runtime_error("commit on ThreadPool is stopped.");

		using RetType = decltype(f(args...)); // typename std::result_of::type, 函数 f 的返回值类型
		auto task = make_shared<packaged_task<RetType()>>(
			bind(forward<F>(f), forward<Args>(args)...)
		); // 把函数入口及参数,打包(绑定)
		future<RetType> future = task->get_future();
		{    // 添加任务到队列
			lock_guard<mutex> lock{ _lock };//对当前块的语句加锁  lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock()
			_tasks.emplace([task]() { // push(Task{...}) 放到队列后面
				(*task)();
			});
		}
#ifdef THREADPOOL_AUTO_GROW
		if (_idlThrNum < 1 && _pool.size() < THREADPOOL_MAX_NUM)
			addThread(1);
#endif // !THREADPOOL_AUTO_GROW
		_task_cv.notify_one(); // 唤醒一个线程执行

		return future;
	}
	// 提交一个无参任务, 且无返回值
	template <class F>
	void commit2(F&& task)
	{
		if (!_run) return;
		{
			lock_guard<mutex> lock{ _lock };
			_tasks.emplace(std::forward<F>(task));
		}
#ifdef THREADPOOL_AUTO_GROW
		if (_idlThrNum < 1 && _pool.size() < THREADPOOL_MAX_NUM)
			addThread(1);
#endif // !THREADPOOL_AUTO_GROW
		_task_cv.notify_one();
	}
	//空闲线程数量
	int idlCount() { return _idlThrNum; }
	//线程数量
	int thrCount() { return _pool.size(); }

#ifndef THREADPOOL_AUTO_GROW
private:
#endif // !THREADPOOL_AUTO_GROW
	//添加指定数量的线程
	void addThread(unsigned short size)
	{
#ifdef THREADPOOL_AUTO_GROW
		if (!_run)    // stoped ??
			throw runtime_error("Grow on ThreadPool is stopped.");
		unique_lock<mutex> lockGrow{ _lockGrow }; //自动增长锁
#endif // !THREADPOOL_AUTO_GROW
		for (; _pool.size() < THREADPOOL_MAX_NUM && size > 0; --size)
		{   //增加线程数量,但不超过 预定义数量 THREADPOOL_MAX_NUM
			_pool.emplace_back( [this]{ //工作线程函数
				while (true) //防止 _run==false 时立即结束,此时任务队列可能不为空
				{
					Task task; // 获取一个待执行的 task
					{
						// unique_lock 相比 lock_guard 的好处是:可以随时 unlock() 和 lock()
						unique_lock<mutex> lock{ _lock };
						_task_cv.wait(lock, [this] { // wait 直到有 task, 或需要停止
							return !_run || !_tasks.empty();
						});
						if (!_run && _tasks.empty())
							return;
						_idlThrNum--;
						task = move(_tasks.front()); // 按先进先出从队列取一个 task
						_tasks.pop();
					}
					task();//执行任务
#ifdef THREADPOOL_AUTO_GROW
					if (_idlThrNum>0 && _pool.size() > _initSize) //支持自动释放空闲线程,避免峰值过后大量空闲线程
						return;
#endif // !THREADPOOL_AUTO_GROW
					{
						unique_lock<mutex> lock{ _lock };
						_idlThrNum++;
					}
				}
			});
			{
				unique_lock<mutex> lock{ _lock };
				_idlThrNum++;
			}
		}
	}
};
}
#endif  //https://github.com/lzpong/

3、涉及的C++11的知识

1)using Task = function 是类型别名,简化了 typedef 的用法。function 可以认为是一个函数类型,接受任意原型是 void() 的函数,或是函数对象,或是匿名函数。void() 意思是不带参数,没有返回值。

2)pool.emplace_back([this]{…}) 和 pool.push_back([this]{…}) 功能一样,只不过前者性能会更好;

3)pool.emplace_back([this]{…}) 是构造了一个线程对象,执行函数是拉姆达匿名函数 ;

4)所有对象的初始化方式均采用了 {},而不再使用 () 方式,因为风格不够一致且容易出错;

5)匿名函数: [this]{…} 不多说。[] 是捕捉器,this 是引用域外的变量 this指针, 内部使用死循环, 由cv_task.wait(lock,[this]{…}) 来阻塞线程;

6)delctype(expr) 用来推断 expr 的类型,和 auto 是类似的,相当于类型占位符,占据一个类型的位置;auto f(A a, B b) -> decltype(a+b) 是一种用法,不能写作 decltype(a+b) f(A a, B b),为啥?! c++ 就是这么规定的!

7)commit 方法是不是略奇葩!可以带任意多的参数,第一个参数是 f,后面依次是函数 f 的参数(注意:参数要传struct/class的话,建议用pointer,小心变量的作用域)! 可变参数模板是 c++11 的一大亮点,够亮!至于为什么是 Arg… 和 arg… ,因为规定就是这么用的!

8)commit 直接使用智能调用stdcall函数,但有两种方法可以实现调用类成员,一种是使用 bind: .commit(std::bind(&Dog::sayHello, &dog)); 一种是用 mem_fn: .commit(std::mem_fn(&Dog::sayHello), &dog);

9)make_shared 用来构造 shared_ptr 智能指针。用法大体是 shared_ptr p = make_shared(4) 然后 *p == 4 。智能指针的好处就是, 自动 delete !

10)bind 函数,接受函数 f 和部分参数,返回currying后的匿名函数,譬如 bind(add, 4) 可以实现类似 add4 的函数!

11)forward() 函数,类似于 move() 函数,后者是将参数右值化,前者是… 肿么说呢?大概意思就是:不改变最初传入的类型的引用类型(左值还是左值,右值还是右值);

12)packaged_task 就是任务函数的封装类,通过 get_future 获取 future , 然后通过 future 可以获取函数的返回值(future.get());packaged_task 本身可以像函数一样调用 () ;

13)queue 是队列类, front() 获取头部元素, pop() 移除头部元素;back() 获取尾部元素,push() 尾部添加元素;

14)lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock(),是 c++ RAII 的 idea;

15)condition_variable cv; 条件变量, 需要配合 unique_lock 使用;unique_lock 相比 lock_guard 的好处是:可以随时 unlock() 和 lock()。 cv.wait() 之前需要持有 mutex,wait 本身会 unlock() mutex,如果条件满足则会重新持有 mutex。

16)最后线程池析构的时候,join() 可以等待任务都执行完在结束,很安全!

4、使用demo

#include "threadpool.h"
#include 

void fun1(int slp)
{
    printf("  hello, fun1 !  %d\n" ,std::this_thread::get_id());
    if (slp>0) {
        printf(" ======= fun1 sleep %d  =========  %d\n",slp, std::this_thread::get_id());
        std::this_thread::sleep_for(std::chrono::milliseconds(slp));
    }
}

struct gfun {
    int operator()(int n) {
        printf("%d  hello, gfun !  %d\n" ,n, std::this_thread::get_id() );
        return 42;
    }
};

class A {
public:
    static int Afun(int n = 0) {   //函数必须是 static 的才能直接使用线程池
        std::cout << n << "  hello, Afun !  " << std::this_thread::get_id() << std::endl;
        return n;
    }

    static std::string Bfun(int n, std::string str, char c) {
        std::cout << n << "  hello, Bfun !  "<< str.c_str() <<"  " << (int)c <<"  " << std::this_thread::get_id() << std::endl;
        return str;
    }
};

int main()
    try {
        std::threadpool executor{ 50 };
        A a;
        std::future<void> ff = executor.commit(fun1,0);
        std::future<int> fg = executor.commit(gfun{},0);
        std::future<int> gg = executor.commit(a.Afun, 9999); //IDE提示错误,但可以编译运行
        std::future<std::string> gh = executor.commit(A::Bfun, 9998,"mult args", 123);
        std::future<std::string> fh = executor.commit([]()->std::string { std::cout << "hello, fh !  " << std::this_thread::get_id() << std::endl; return "hello,fh ret !"; });

        std::cout << " =======  sleep ========= " << std::this_thread::get_id() << std::endl;
        std::this_thread::sleep_for(std::chrono::microseconds(900));

        for (int i = 0; i < 50; i++) {
            executor.commit(fun1,i*100 );
        }
        std::cout << " =======  commit all ========= " << std::this_thread::get_id()<< " idlsize="<<executor.idlCount() << std::endl;

        std::cout << " =======  sleep ========= " << std::this_thread::get_id() << std::endl;
        std::this_thread::sleep_for(std::chrono::seconds(3));

        ff.get(); //调用.get()获取返回值会等待线程执行完,获取返回值
        std::cout << fg.get() << "  " << fh.get().c_str()<< "  " << std::this_thread::get_id() << std::endl;

        std::cout << " =======  sleep ========= " << std::this_thread::get_id() << std::endl;
        std::this_thread::sleep_for(std::chrono::seconds(3));

        std::cout << " =======  fun1,55 ========= " << std::this_thread::get_id() << std::endl;
        executor.commit(fun1,55).get();    //调用.get()获取返回值会等待线程执行完

        std::cout << "end... " << std::this_thread::get_id() << std::endl;


        std::threadpool pool(4);
        std::vector< std::future<int> > results;

        for (int i = 0; i < 8; ++i) {
            results.emplace_back(
                pool.commit([i] {
                    std::cout << "hello " << i << std::endl;
                    std::this_thread::sleep_for(std::chrono::seconds(1));
                    std::cout << "world " << i << std::endl;
                    return i*i;
                })
            );
        }
        std::cout << " =======  commit all2 ========= " << std::this_thread::get_id() << std::endl;

        for (auto && result : results)
            std::cout << result.get() << ' ';
        std::cout << std::endl;
        return 0;
    }
catch (std::exception& e) {
    std::cout << "some unhappy happened...  " << std::this_thread::get_id() << e.what() << std::endl;
}

你可能感兴趣的:(C++,c++)