- Hive日分区表如何快速导入到StarRocks
DawsonSally
大数据StarRocksJava大数据hivehadoop
1、背景业务现状:集团使用FineBI做数据呈现及报表分析工具,经过近两年的BI建设,供应链域及营销域的BI建设已初具规模并体系化。数仓规模60TB,FineBI数据集约8000个,BI挂出报表数约1600个,报表月增幅在40左右。技术现状:数据加工链路:业务系统数据库->Hive数仓->PG导出库->FineBI抽取数据集->BI报表。该数据链路下,遇到了一些问题。本文不展开全部问题,仅讨论PG
- MongoDB4.4操作命令
百度一下吧
MongoDb
showdbs;//显示所有数据的列表usemvx;//如果数据库不存在,则创建数据库,否则切换到指定数据库。db;//查看当前数据库db.mvx.insertOne({'username':'root'});//插入数据当你插入一些文档时,MongoDB会自动创建集db.dropDatabase();//删除当前数据库,默认为testdb.createCollection("users");//
- 基于YOLOv11的目标检测系统
夜思、晨
YOLO目标检测人工智能
基于YOLOv11的目标检测系统前言YOLO11是UltralyticsYOLO是实时物体检测器系列中的最新产品,以最先进的精度、速度和效率重新定义了可能实现的目标。在之前YOLO版本令人印象深刻的进步基础上,YOLO11在架构和训练方法上进行了重大改进,使其成为广泛的计算机视觉任务的多功能选择。YOLOv11在COCO数据集的表现如下图:一、软件简介这款软件是一种基于最新YOLOv11算法的目标
- 使用Python和TensorFlow/Keras构建一个简单的CNN模型来识别手写数字
mosquito_lover1
pythontensorflowkeras
一个简单的图像识别项目代码示例,使用Python和TensorFlow/Keras库来训练一个基本的CNN模型,用于识别MNIST手写数字数据集,并将测试结果输出到HTML。代码运行效果截图:具体操作步骤:1.安装所需的库首先,确保你已经安装了所需的Python库:pipinstalltensorflownumpymatplotlibpandasjinja2TensorFlow:用于构建和训练深度
- 【保姆级教程】YOLOv8_Seg实例分割:训练自己的数据集
BILLY BILLY
YOLOv8系列语义分割YOLO人工智能
一、YOLOV8环境准备1.1下载安装最新的YOLOv8代码仓库地址:https://github.com/ultralytics/ultralytics1.2配置环境pipinstall-rrequirements.txt-ihttps://pypi
- yolov5 实例分割:从原理、构建数据集到训练部署
外卖猿
AI实战yolov5实例分割c++部署opencv自定义数据集
yolov5实例分割:从原理、构建数据集到训练部署1.模型介绍1.1YOLOv5结构1.2YOLOv5推理时间2.构建数据集2.1使用labelme标注数据集2.2生成coco格式label2.3coco格式转yolo格式3.训练3.1整理数据集3.2修改配置文件3.3执行代码进行训练4.使用OpenCV进行c++部署5.使用openvino进行c++部署参考文献1.模型介绍1.1YOLOv5结构
- 【单层神经网络】基于MXNet的线性回归实现(底层实现)
辰尘_星启
线性回归mxnet机器学习人工智能深度学习神经网络python
写在前面刚开始先从普通的寻优算法开始,熟悉一下学习训练过程下面将使用梯度下降法寻优,但这大概只能是局部最优,它并不是一个十分优秀的寻优算法整体流程生成训练数据集(实际工程中,需要从实际对象身上采集数据)确定模型及其参数(输入输出个数、阶次,偏置等)确定学习方式(损失函数、优化算法,学习率,训练次数,终止条件等)读取数据集(不同的读取方式会影响最终的训练效果)训练模型完整程序及注释fromIPyth
- 遗传算法与深度学习实战(32)——生成对抗网络详解与实现
盼小辉丶
遗传算法与深度学习实战深度学习生成对抗网络人工智能
遗传算法与深度学习实战(32)——生成对抗网络详解与实现0.前言1.生成对抗网络2.构建卷积生成对抗网络小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetworks,GAN)是一种由两个相互竞争的神经网络组成的深度学习模型,它由一个生成网络和一个判别网络组成,通过彼此之间的博弈来提高生成网络的性能。生成对抗网络使用神经网络生成与原始图像集非常相似的新图像,它在图像生
- 个人c项目 java项目解释
2301_79306982
java开发语言
1.测试环境与方法中文:本地测试环境:可以在一台配置中等的电脑上构建一个测试环境,利用现成的大词库数据(例如英文词典或自定义数据集)来构建Trie。使用C语言的编译器(例如gcc)编译项目,并利用标准库和第三方工具(如gprof、valgrind)进行性能与内存监控。English:测试方法:利用大量随机或实际数据进行查找和自动补全操作,并记录操作时延与资源占用。分析构建Trie的时间开销,通过计
- 从MySQL迁移到PostgreSQL的完整指南
m0_74823878
mysqlpostgresql数据库
1.引言在现代数据库管理中,选择合适的数据库系统对业务的成功至关重要。随着企业数据量的增长和对性能要求的提高,许多公司开始考虑从MySQL迁移到PostgreSQL。这一迁移的主要原因包括以下几个方面:1.1性能和扩展性PostgreSQL以其高性能和优秀的扩展能力而闻名。它支持复杂的查询优化和并发控制,能够更高效地处理大规模数据。与MySQL相比,PostgreSQL在处理复杂查询和大数据集时表
- C++ Brain Teasers: 未指定和实现定义的行为-函数参数的求值顺序
另寻沧海
cpp17&20c++开发语言
C++标准并未严格指定所有内容;它为实现留下了一些自由。以下是一些示例:整数类型的特定大小函数参数的求值顺序全局变量的初始化顺序这允许每个实现在特定系统上做出最好的选择。大多数程序都有一些未指定或实现定义的行为;这不是错误。与未定义的行为相反,这没什么问题。只是不同的实现在允许的行为集内可能会表现得略有不同。任何表达式的任何部分的求值顺序(包括函数参数的求值顺序)均未指定(下面列出了一些例外情况)
- 使用python实现Hadoop中MapReduce
qq_44801116
Pythonpythonhadoopmapreduce
Hadoop包含HDFS(分布式文件系统)、YARN(资源管理器)、MapReduce(编程模型)。一、三大组件的简介(1)HDFS(HadoopDistributedFileSystem):HDFS是Hadoop的分布式文件系统,它是将大规模数据分散存储在多个节点上的基础。主要负责数据的存储和管理,可以将大数据集分成多个数据块,并将数据块分配到不同的计算节点上存储,提高数据的可靠性和处理效率。旨
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
sirius12345123
pytorch逻辑回归人工智能
importtorchimportnumpyasnpimporttorch.nnasnnfromtorch.utils.dataimportDataLoader,TensorDatasetdata=np.array([[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1.8,-49.1],[1.5,75.
- deseq2进行差异分析时的分组问题
请你喝好果汁641
RNA-seq学习
这段代码是使用DESeq2包进行RNA-Seq数据差异表达分析的示例。它展示了如何在不同实验设计下进行差异表达分析,包括两组比较、两条件两基因型的交互作用,以及两条件三基因型的分析。示例1:两组比较#创建一个示例数据集,包含4个样本dds=1.10中,所选的阈值是过滤器的最低分位数,其中拒绝数接近拟合曲线在过滤器分位数上的峰值。“接近”定义为在1个残差标准差内。对于未通过过滤阈值的基因,调整后的p
- Samtools手册中文版
请你喝好果汁641
linux生信linux
软件手册:Samtools手册翻译Samtools是一个用于处理和分析SAM(SequenceAlignment/Map)和BAM(BinaryAlignment/Map)格式文件的工具集。它提供了多种命令用于序列比对、格式转换、索引创建和统计分析等。接下来我们翻译这一部分的命令说明:常用samtools命令列表好的,我们将这39条命令拆分为三部分进行说明,并为每个部分提供举例。1.添加或替换读取
- 六。自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
菜狗woc
pytorch逻辑回归人工智能
importtorchimporttorch.nnasnnfromtorch.utils.dataimportDatasetimportnumpyasnp#自定义数据集类classCustomDataset(Dataset):def__init__(self,x_data,y_data):self.x_data=torch.from_numpy(x_data).float()self.y_data
- React Native 列表组件:FlashList、FlatList 及更多
前端javascript
CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读在移动开发中,高效展示数据列表至关重要。作为ReactNative开发者,我们可以使用多种强大的工具来完成这一任务。无论是ScrollView、SectionList还是FlatList,ReactNative都提供了一系列用于数据展示的组件。然而,随着数据集的增长和性能需求的提高,我们需要更优化的解决方案。这时,Shopify推出
- Spring Cloud微服务
程序老猫
springcloud微服务spring
一、SpringCloud简介定位:基于SpringBoot的分布式系统开发工具集,提供微服务架构的完整解决方案。核心功能:服务发现、配置管理、负载均衡、熔断限流、API网关等。生态优势:与SpringBoot深度集成,社区活跃,组件丰富。二、SpringCloud核心组件1.服务注册与发现Eureka(Netflix,已闭源,推荐替代方案)服务注册中心,管理微服务实例的元数据(IP、端口、健康状
- 运维自动化工具集:构建高效运维体系的密钥
我的运维人生
运维自动化运维开发技术共享
运维自动化工具集:构建高效运维体系的密钥在数字化转型的大潮中,企业对于IT系统的稳定性和高效运维的需求日益增长。传统的运维模式依赖于人工操作,不仅效率低下,而且难以应对大规模、高复杂度的IT环境。因此,运维自动化成为提升运维效率、保障业务连续性的关键。本文将深入探讨一系列运维自动化工具集,并通过实际代码案例展示其应用,旨在为运维工程师提供一套构建高效运维体系的实践指南。一、运维自动化概述运维自动化
- Eureka服务端与客户端搭建
前言这段时间在构建自己的开发工具集,避不开的就是各种中间件访问层的搭建。而springcloud唯二绕不开的就是eureka了,所以就重复造轮子,以后忘记了也有所参考。正文前期准备maven/gradleeureka服务器搭建新建springboot空项目这一步其实是非必要的,你也可以新建maven/gradle空项目或者普通的web项目,只是springboot的自动配置比较方便。修改pom.x
- 物联网架构之Hadoop
moluxiangfenglo
架构hadoop大数据
hadoop体系结构Hadoop是一个开源的分布式计算平台,主要用于存储和处理大规模数据集。其核心架构包括以下几个关键组件:1.HadoopDistributedFileSystem(HDFS)HDFS是Hadoop的分布式文件系统,用于存储大数据集。它具有以下特点:主从架构:包括一个NameNode(主节点)和多个DataNode(从节点)。数据块存储:将大文件分割成多个数据块,每个数据块通常大
- 一、TensorFlow的建模流程
李建军
TensorFlowtensorflow人工智能python
1.数据准备与预处理:加载数据:使用内置数据集或自定义数据。预处理:归一化、调整维度、数据增强。划分数据集:训练集、验证集、测试集。转换为Dataset对象:利用tf.data优化数据流水线。importtensorflowastffromtensorflow.kerasimportlayers#加载MNIST数据集(x_train,y_train),(x_test,y_test)=tf.kera
- 自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
sirius12345123
paddlepaddle逻辑回归人工智能
importnumpyasnpimportpaddleimportpaddle.nnasnnseed=1paddle.seed(seed)data=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1.8,-49.1],[1.5,75.6],[0.4,34.0],[0.8,62.3]]data=np.a
- ARM、X86、RISC-V三分天下
@daiwei
嵌入式底层原理arm开发risc-v
引入:简单的介绍一下X86、ARM、RISC-V三种cpu架构的区别和应用场景。目录简单概念讲解1.X86架构2.ARM架构3.RISC-V架构应用场景X86、ARM和RISC-V是三种不同的CPU架构,它们在设计理念、指令集和应用场景上有一些区别。简单概念讲解1.X86架构-设计目标:X86架构最初是针对个人计算机(PC)而设计的,具有较高的性能和复杂的指令集。-指令集:X86系列处理器采用复杂
- Python-机器学习(二)-K近邻算法的原理与鸢尾花数据集实现详解
2401_84009679
程序员机器学习python近邻算法
fromsklearn.neighborsimportKNeighborsClassifierk=5#对模型训练clf=KNeighborsClassifier(n_neighbors=k)clf.fit(x,y)#对样本进行预测x_sample=[[0,2]]neighbors=clf.kneighbors(x_sample)neighbors[1]plt.figure(figsize=(16,
- 什么是大模型框架?常用的大模型框架盘点对比
AI产品经理
学习人工智能大数据深度学习语言模型
什么是大模型框架大模型框架是指用于训练、推理和部署大型语言模型(LLMs)的软件工具和库。这些框架通常提供了高效的计算资源管理、分布式训练、模型优化和推理加速等功能,以便更好地利用硬件资源(如GPU和TPU)来处理庞大的数据集和复杂的模型结构。大模型框架的优点高效性:通过优化计算和内存管理,这些框架能够显著提高训练和推理的速度。可扩展性:支持分布式训练,可以在多个GPU或TPU上运行,适用于大规模
- 中文对联/十二生肖/城市景点/旅游计划……年味超浓的数据集汇总
正月初三,年味正浓。新春的喜庆氛围不仅弥漫在大街小巷,也在人工智能领域引发了诸多创新应用。从AI生成春联,到春运交通标志的智能识别,再到生肖文化的深度挖掘,AI工具正赋能传统民俗,让年味更浓!在这阖家团圆,喜庆祥和的日子里,HyperAI超神经为大家整理了8个春节相关的数据集,涵盖对联、十二生肖、民族文化等热门主题,助力开发者在AI赋能春节的道路上大展拳脚!快来领取你的「新春大礼包」吧~点击查看更
- 知识蒸馏教程 Knowledge Distillation Tutorial
Qiming_v
Distillation蒸馏
来自于:KnowledgeDistillationTutorial将大模型蒸馏为小模型,可以节省计算资源,加快推理过程,更高效的运行。使用CIFAR-10数据集importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvision.transformsastransformsimporttorchvision.datasetsa
- 目标检测数据集-Pascal VOC 数据集介绍
AI研习图书馆
深度学习数据集目标检测数据集VOC2007
个人微信公众号:AI研习图书馆ID:(Art-Intelligence)欢迎关注,交流学习,共同进步~1.引言PASCALVOC数据集,为图像识别和分类提供了一整套标准化的优秀数据集,从2005年到2012年每年都会举行一场图像识别challenge。该挑战的主要目的是识别真实场景中一些类别的物体。在该挑战中,这是一个监督学习的问题,训练集以带标签的图片的形式给出。介绍PascalVOC数据集:C
- 详解PASCAL VOC数据集及基于Python和PyTorch的下载、解析及可视化【目标检测+类别分割】
KRISNAT
机器学习数据集pythonpytorch目标检测
目录PASCALVOC数据集简介PASCALVOC各年份数据集摘要数据集下载通过下面官方提供的网址下载通过PyTorch的API下载数据集解析目标检测数据集物体分割数据集参考文献PASCALVOC数据集简介PASCALVOC数据集是计算机视觉领域中目标检测(objectdetection)任务和分割(segmentation)任务的基准数据集。PASCALVOC数据和比赛发源于由欧盟资助的PASC
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p