Zygote进程是init进程启动时创建的,Zygote进程的名称并不是叫zygote,而是叫app_process,这个名称是在Android.mk中定义的,Zygote进程启动后,Linux 系统下的petri 系统会调用app_process ,将其名称换成了“zygote ”。
我们知道zygote进程是init进程在SecondStageMain方法中解析init.rc文件,然后通过ExecuteOneCommand死循环执行init.rc文件命令创建出来的。
先来看init.rc里面和启动zygote相关的代码:
#文件路径:system/core/rootdir/init.rc 或设备上 /system/etc/init/hw/init.rc
#引入子rc文件,${ro.zygote}是一个变量,取值范围zygote32、zygote64、zygote32_64、zygote64_32,会根据实际设备是32位还是64位进行选择
import /system/etc/init/hw/init.${ro.zygote}.rc
# Mount filesystems and start core system services.
on late-init
# Now we can start zygote for devices with file based encryption
#在init启动后的一个时机,触发启动zygote进程
trigger zygote-start
on zygote-start && property:ro.crypto.state=unencrypted
# A/B update verifier that marks a successful boot.
exec_start update_verifier_nonencrypted
start statsd
start netd
start zygote #启动zygote进程,那么这个zygote是什么呢?
start zygote_secondary
#还记得文件开头处的import 引入的子rc文件吗?我们以init.zygote64.rc为例:
#文件路径: system/core/rootdir/init.zygote64.rc
#service zygote 服务名为zygote
#对应的可执行程序路径:/system/bin/app_process64 (设备上的路径)
#-Xzygote /system/bin --zygote --start-system-server 执行app_process64时传入的参数
service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server
class main
priority -20
user root #用户角色
group root readproc reserved_disk
socket zygote stream 660 root system
socket usap_pool_primary stream 660 root system
#如果意外挂掉需要重启的服务
onrestart exec_background - system system -- /system/bin/vdc volume abort_fuse
onrestart write /sys/power/state on
onrestart restart audioserver
onrestart restart cameraserver
onrestart restart media
onrestart restart netd
onrestart restart wificond
writepid /dev/cpuset/foreground/tasks
最后会跑到app_main.cpp文件中执行main方法:
Zygote(app_main.cpp)是在native层的,一开始就创建AppRuntime runtime,然后一个while循环给当前进程改名称,最后执行runtime.start("com.android.internal.os.ZygoteInit", args, zygote)后,进入AndroidRuntime.cpp里面,也就是一开始创建的AppRuntime。
//文件路径:framesworks/base/cmds/app_process/app_main.cpp
//argv :-Xzygote /system/bin --zygote --start-system-server
int main(int argc, char* const argv[])
{
//创建了android运行时环境
AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));
//根据传入的参数设置变量值
bool zygote = false;
bool startSystemServer = false;
bool application = false;
String8 niceName;
String8 className;
while (i < argc) {
const char* arg = argv[i++];
if (strcmp(arg, "--zygote") == 0) { //传入参数中有--zygote,所以zygote = true
zygote = true;
niceName = ZYGOTE_NICE_NAME;
} else if (strcmp(arg, "--start-system-server") == 0) { //同理startSystemServer = true
startSystemServer = true;
} else if (strcmp(arg, "--application") == 0) {
application = true;
} else if (strncmp(arg, "--nice-name=", 12) == 0) {
niceName.setTo(arg + 12);
} else if (strncmp(arg, "--", 2) != 0) {
className.setTo(arg);
break;
} else {
--i;
break;
}
}
Vector args;
if (!className.isEmpty()) {
...
}else {
// We're in zygote mode.
maybeCreateDalvikCache();
if (startSystemServer) { //上面已经赋值为true
// args中又添加了这个参数
args.add(String8("start-system-server"));
}
...
// In zygote mode, pass all remaining arguments to the zygote
// main() method.
for (; i < argc; ++i) {
args.add(String8(argv[i]));
}
}
...
//启动zygote的java层调用,从native层转到到java层
if (zygote) {
//启动运行时环境,这里就是有native转到到java层的入口,这也是为什么说zygote是java层进程的鼻祖
//zygote 为true 表示正在启动的进程为zygote进程
//由此可知app_main.cpp在zygote启动其他进程的时候都会通过main()方法
//这里启动的是zygote进程调用runtime start()方法 传入参数
runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
} else if (className) {
//而这个分支是启动app相关的流程,可以先有个印象后续分析到应用的启动流程可能还会看到这里
// 将上面的args参数数组传入
runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
} else {
fprintf(stderr, "Error: no class name or --zygote supplied.\n");
app_usage();
LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
}
}
AndroidRuntime.cpp的start代码如下:
//文件路径: frameworks/base/core/jni/AndroidRuntime.cpp
void AndroidRuntime::start(const char* className, const Vector& options, bool zygote)
{
bool primary_zygote = false;
/*
* 'startSystemServer == true' means runtime is obsolete and not run from
* init.rc anymore, so we print out the boot start event here.
*/
//根据options参数判断是否是第一次启动zygote
for (size_t i = 0; i < options.size(); ++i) {
if (options[i] == startSystemServer) {
primary_zygote = true;
/* track our progress through the boot sequence */
const int LOG_BOOT_PROGRESS_START = 3000;
LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START, ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
}
}
//设置android root目录环境变量
const char* rootDir = getenv("ANDROID_ROOT");
if (rootDir == NULL) {
rootDir = "/system";
if (!hasDir("/system")) {
LOG_FATAL("No root directory specified, and /system does not exist.");
return;
}
setenv("ANDROID_ROOT", rootDir, 1);
}
JNIEnv* env;
//创建虚拟机,这边设置了虚拟机的一些参数(可在这边虚拟机调优)然后启用虚拟机
if (startVm(&mJavaVM, &env, zygote, primary_zygote) != 0) {
return;
}
//注册JNI方法,系统api中涉及的jni方法都是在这里注册的
//注册android SDK需要使用的JNI方法
if (startReg(env) < 0) {
ALOGE("Unable to register all android natives\n");
return;
}
//放射调用ZygoteInit.java 的main()方法
//这里的className 是app_main.cpp的main()方法里面
//执行runtime.start("com.android.internal.os.ZygoteInit", args, zygote)
//传入的com.android.internal.os.ZygoteInit
char* slashClassName = toSlashClassName(className != NULL ? className : "");
//找到com.android.internal.os.ZygoteInit类
jclass startClass = env->FindClass(slashClassName);
if (startClass == NULL) {
}else {
//找到com.android.internal.os.ZygoteInit类的main方法
jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
"([Ljava/lang/String;)V");
if (startMeth == NULL) {
ALOGE("JavaVM unable to find main() in '%s'\n", className);
/* keep going */
} else {
// 进入zygoteInit.main,将zygoteinit带入java世界
//反射执行ZygoteInit.java 的main()方法,由此过渡到java层
env->CallStaticVoidMethod(startClass, startMeth, strArray);
}
}
}
首先创建虚拟机,注册android SDK需要使用的JNI方法,最后通过反射调用zygoteInit.main函数,将zygoteinit带入java世界(由native过度到java层)。
注:AndroidRuntime里面不止创建虚拟机,还会加载各类引用Core Libraries加载核心Libraries
startVm代码如下:
int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv, bool zygote, bool primary_zygote)
{
//JVM参数设置
JavaVMInitArgs initArgs;
char propBuf[PROPERTY_VALUE_MAX];
char jniOptsBuf[sizeof("-Xjniopts:")-1 + PROPERTY_VALUE_MAX];
char heapstartsizeOptsBuf[sizeof("-Xms")-1 + PROPERTY_VALUE_MAX];
char heapsizeOptsBuf[sizeof("-Xmx")-1 + PROPERTY_VALUE_MAX];
char heapgrowthlimitOptsBuf[sizeof("-XX:HeapGrowthLimit=")-1 + PROPERTY_VALUE_MAX];
char heapminfreeOptsBuf[sizeof("-XX:HeapMinFree=")-1 + PROPERTY_VALUE_MAX];
char heapmaxfreeOptsBuf[sizeof("-XX:HeapMaxFree=")-1 + PROPERTY_VALUE_MAX];
char usejitOptsBuf[sizeof("-Xusejit:")-1 + PROPERTY_VALUE_MAX];
char jitpthreadpriorityOptsBuf[sizeof("-Xjitpthreadpriority:")-1 + PROPERTY_VALUE_MAX];
char jitmaxsizeOptsBuf[sizeof("-Xjitmaxsize:")-1 + PROPERTY_VALUE_MAX];
char jitinitialsizeOptsBuf[sizeof("-Xjitinitialsize:")-1 + PROPERTY_VALUE_MAX];
char jitthresholdOptsBuf[sizeof("-Xjitthreshold:")-1 + PROPERTY_VALUE_MAX];
char useJitProfilesOptsBuf[sizeof("-Xjitsaveprofilinginfo:")-1 + PROPERTY_VALUE_MAX];
char jitprithreadweightOptBuf[sizeof("-Xjitprithreadweight:")-1 + PROPERTY_VALUE_MAX];
char jittransitionweightOptBuf[sizeof("-Xjittransitionweight:")-1 + PROPERTY_VALUE_MAX];
char hotstartupsamplesOptsBuf[sizeof("-Xps-hot-startup-method-samples:")-1 + PROPERTY_VALUE_MAX];
char saveResolvedClassesDelayMsOptsBuf[
sizeof("-Xps-save-resolved-classes-delay-ms:")-1 + PROPERTY_VALUE_MAX];
char madviseRandomOptsBuf[sizeof("-XX:MadviseRandomAccess:")-1 + PROPERTY_VALUE_MAX];
char gctypeOptsBuf[sizeof("-Xgc:")-1 + PROPERTY_VALUE_MAX];
char backgroundgcOptsBuf[sizeof("-XX:BackgroundGC=")-1 + PROPERTY_VALUE_MAX];
char heaptargetutilizationOptsBuf[sizeof("-XX:HeapTargetUtilization=")-1 + PROPERTY_VALUE_MAX];
char foregroundHeapGrowthMultiplierOptsBuf[
sizeof("-XX:ForegroundHeapGrowthMultiplier=")-1 + PROPERTY_VALUE_MAX];
char finalizerTimeoutMsOptsBuf[sizeof("-XX:FinalizerTimeoutMs=")-1 + PROPERTY_VALUE_MAX];
char threadSuspendTimeoutOptsBuf[sizeof("-XX:ThreadSuspendTimeout=")-1 + PROPERTY_VALUE_MAX];
char cachePruneBuf[sizeof("-Xzygote-max-boot-retry=")-1 + PROPERTY_VALUE_MAX];
char dex2oatXmsImageFlagsBuf[sizeof("-Xms")-1 + PROPERTY_VALUE_MAX];
char dex2oatXmxImageFlagsBuf[sizeof("-Xmx")-1 + PROPERTY_VALUE_MAX];
char dex2oatCompilerFilterBuf[sizeof("--compiler-filter=")-1 + PROPERTY_VALUE_MAX];
char dex2oatImageCompilerFilterBuf[sizeof("--compiler-filter=")-1 + PROPERTY_VALUE_MAX];
char dex2oatThreadsBuf[sizeof("-j")-1 + PROPERTY_VALUE_MAX];
char dex2oatThreadsImageBuf[sizeof("-j")-1 + PROPERTY_VALUE_MAX];
char dex2oatCpuSetBuf[sizeof("--cpu-set=")-1 + PROPERTY_VALUE_MAX];
char dex2oatCpuSetImageBuf[sizeof("--cpu-set=")-1 + PROPERTY_VALUE_MAX];
char dex2oat_isa_variant_key[PROPERTY_KEY_MAX];
char dex2oat_isa_variant[sizeof("--instruction-set-variant=") -1 + PROPERTY_VALUE_MAX];
char dex2oat_isa_features_key[PROPERTY_KEY_MAX];
char dex2oat_isa_features[sizeof("--instruction-set-features=") -1 + PROPERTY_VALUE_MAX];
char dex2oatFlagsBuf[PROPERTY_VALUE_MAX];
char dex2oatImageFlagsBuf[PROPERTY_VALUE_MAX];
char extraOptsBuf[PROPERTY_VALUE_MAX];
char voldDecryptBuf[PROPERTY_VALUE_MAX];
char perfettoHprofOptBuf[sizeof("-XX:PerfettoHprof=") + PROPERTY_VALUE_MAX];
enum {
kEMDefault,
kEMIntPortable,
kEMIntFast,
kEMJitCompiler,
} executionMode = kEMDefault;
char localeOption[sizeof("-Duser.locale=") + PROPERTY_VALUE_MAX];
char lockProfThresholdBuf[sizeof("-Xlockprofthreshold:")-1 + PROPERTY_VALUE_MAX];
char nativeBridgeLibrary[sizeof("-XX:NativeBridge=") + PROPERTY_VALUE_MAX];
char cpuAbiListBuf[sizeof("--cpu-abilist=") + PROPERTY_VALUE_MAX];
char corePlatformApiPolicyBuf[sizeof("-Xcore-platform-api-policy:") + PROPERTY_VALUE_MAX];
char methodTraceFileBuf[sizeof("-Xmethod-trace-file:") + PROPERTY_VALUE_MAX];
char methodTraceFileSizeBuf[sizeof("-Xmethod-trace-file-size:") + PROPERTY_VALUE_MAX];
std::string fingerprintBuf;
char jdwpProviderBuf[sizeof("-XjdwpProvider:") - 1 + PROPERTY_VALUE_MAX];
char opaqueJniIds[sizeof("-Xopaque-jni-ids:") - 1 + PROPERTY_VALUE_MAX];
char bootImageBuf[sizeof("-Ximage:") - 1 + PROPERTY_VALUE_MAX];
........
/*
* Initialize the VM.
*
* The JavaVM* is essentially per-process, and the JNIEnv* is per-thread.
* If this call succeeds, the VM is ready, and we can start issuing
* JNI calls.
*/
//创建JVM
if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) {
ALOGE("JNI_CreateJavaVM failed\n");
return -1;
}
return 0;
}
可以看到startVm方法一开始对JVM的参数进行了各种设置,最后在JNI_CreateJavaVM方法中创建JVM。
注:JVM最大的作用就是进行内存管理
JNI是Java层调用C/C++的中间层,比如说java层调用函数a,会通过JNI去找一个映射关系,最后调用到C/C++层的函数b。JNI的函数注册可以分为静态注册与动态注册。
可以看到这这个方法中调用register_jni_procs(gRegJNI, NELEM(gRegJNI), env)动态注册了一些java层调用native层的jni函数。
/*
* Register android native functions with the VM.
*/
/*static*/ int AndroidRuntime::startReg(JNIEnv* env)
{
ATRACE_NAME("RegisterAndroidNatives");
/*
* This hook causes all future threads created in this process to be
* attached to the JavaVM. (This needs to go away in favor of JNI
* Attach calls.)
*/
androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);
ALOGV("--- registering native functions ---\n");
/*
* Every "register" function calls one or more things that return
* a local reference (e.g. FindClass). Because we haven't really
* started the VM yet, they're all getting stored in the base frame
* and never released. Use Push/Pop to manage the storage.
*/
env->PushLocalFrame(200);
// gRegJNI,动态注册的java调用native的jni
if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
env->PopLocalFrame(NULL);
return -1;
}
env->PopLocalFrame(NULL);
//createJavaThread("fubar", quickTest, (void*) "hello");
return 0;
}
static const RegJNIRec gRegJNI[] = {
REG_JNI(register_com_android_internal_os_RuntimeInit),
REG_JNI(register_com_android_internal_os_ZygoteInit_nativeZygoteInit),
REG_JNI(register_android_os_SystemClock),
REG_JNI(register_android_util_EventLog),
REG_JNI(register_android_util_Log),
REG_JNI(register_android_util_MemoryIntArray),
REG_JNI(register_android_app_admin_SecurityLog),
REG_JNI(register_android_content_AssetManager),
REG_JNI(register_android_content_StringBlock),
REG_JNI(register_android_content_XmlBlock),
REG_JNI(register_android_content_res_ApkAssets),
REG_JNI(register_android_text_AndroidCharacter),
REG_JNI(register_android_text_Hyphenator),
REG_JNI(register_android_view_InputDevice),
REG_JNI(register_android_view_KeyCharacterMap),
REG_JNI(register_android_os_Process),
REG_JNI(register_android_os_SystemProperties),
REG_JNI(register_android_os_Binder),
REG_JNI(register_android_os_Parcel),
REG_JNI(register_android_os_HidlMemory),
REG_JNI(register_android_os_HidlSupport),
REG_JNI(register_android_os_HwBinder),
REG_JNI(register_android_os_HwBlob),
REG_JNI(register_android_os_HwParcel),
REG_JNI(register_android_os_HwRemoteBinder),
REG_JNI(register_android_os_NativeHandle),
REG_JNI(register_android_os_ServiceManager),
REG_JNI(register_android_os_storage_StorageManager),
REG_JNI(register_android_os_VintfObject),
REG_JNI(register_android_os_VintfRuntimeInfo),
REG_JNI(register_android_service_DataLoaderService),
REG_JNI(register_android_view_DisplayEventReceiver),
REG_JNI(register_android_view_InputApplicationHandle),
REG_JNI(register_android_view_InputWindowHandle),
REG_JNI(register_android_view_Surface),
REG_JNI(register_android_view_SurfaceControl),
REG_JNI(register_android_view_SurfaceSession),
REG_JNI(register_android_view_CompositionSamplingListener),
REG_JNI(register_android_view_TextureView),
REG_JNI(register_com_google_android_gles_jni_EGLImpl),
REG_JNI(register_com_google_android_gles_jni_GLImpl),
REG_JNI(register_android_opengl_jni_EGL14),
REG_JNI(register_android_opengl_jni_EGL15),
REG_JNI(register_android_opengl_jni_EGLExt),
REG_JNI(register_android_opengl_jni_GLES10),
REG_JNI(register_android_opengl_jni_GLES10Ext),
REG_JNI(register_android_opengl_jni_GLES11),
REG_JNI(register_android_opengl_jni_GLES11Ext),
REG_JNI(register_android_opengl_jni_GLES20),
REG_JNI(register_android_opengl_jni_GLES30),
REG_JNI(register_android_opengl_jni_GLES31),
REG_JNI(register_android_opengl_jni_GLES31Ext),
REG_JNI(register_android_opengl_jni_GLES32),
REG_JNI(register_android_graphics_classes),
REG_JNI(register_android_graphics_BLASTBufferQueue),
REG_JNI(register_android_graphics_GraphicBuffer),
REG_JNI(register_android_graphics_SurfaceTexture),
REG_JNI(register_android_database_CursorWindow),
REG_JNI(register_android_database_SQLiteConnection),
REG_JNI(register_android_database_SQLiteGlobal),
REG_JNI(register_android_database_SQLiteDebug),
REG_JNI(register_android_os_Debug),
REG_JNI(register_android_os_FileObserver),
REG_JNI(register_android_os_GraphicsEnvironment),
REG_JNI(register_android_os_MessageQueue),
REG_JNI(register_android_os_SELinux),
REG_JNI(register_android_os_Trace),
REG_JNI(register_android_os_UEventObserver),
REG_JNI(register_android_net_LocalSocketImpl),
REG_JNI(register_android_net_NetworkUtils),
REG_JNI(register_android_os_MemoryFile),
REG_JNI(register_android_os_SharedMemory),
REG_JNI(register_android_os_incremental_IncrementalManager),
REG_JNI(register_com_android_internal_content_om_OverlayConfig),
REG_JNI(register_com_android_internal_os_ClassLoaderFactory),
REG_JNI(register_com_android_internal_os_Zygote),
REG_JNI(register_com_android_internal_os_ZygoteInit),
REG_JNI(register_com_android_internal_util_VirtualRefBasePtr),
REG_JNI(register_android_hardware_Camera),
REG_JNI(register_android_hardware_camera2_CameraMetadata),
REG_JNI(register_android_hardware_camera2_legacy_LegacyCameraDevice),
REG_JNI(register_android_hardware_camera2_legacy_PerfMeasurement),
REG_JNI(register_android_hardware_camera2_DngCreator),
REG_JNI(register_android_hardware_display_DisplayManagerGlobal),
REG_JNI(register_android_hardware_HardwareBuffer),
REG_JNI(register_android_hardware_SensorManager),
REG_JNI(register_android_hardware_SerialPort),
REG_JNI(register_android_hardware_UsbDevice),
REG_JNI(register_android_hardware_UsbDeviceConnection),
REG_JNI(register_android_hardware_UsbRequest),
REG_JNI(register_android_hardware_location_ActivityRecognitionHardware),
REG_JNI(register_android_media_AudioDeviceAttributes),
REG_JNI(register_android_media_AudioEffectDescriptor),
REG_JNI(register_android_media_AudioSystem),
REG_JNI(register_android_media_AudioRecord),
REG_JNI(register_android_media_AudioTrack),
REG_JNI(register_android_media_AudioAttributes),
REG_JNI(register_android_media_AudioProductStrategies),
REG_JNI(register_android_media_AudioVolumeGroups),
REG_JNI(register_android_media_AudioVolumeGroupChangeHandler),
REG_JNI(register_android_media_MediaMetrics),
REG_JNI(register_android_media_MicrophoneInfo),
REG_JNI(register_android_media_RemoteDisplay),
REG_JNI(register_android_media_ToneGenerator),
REG_JNI(register_android_media_midi),
REG_JNI(register_android_opengl_classes),
REG_JNI(register_android_server_NetworkManagementSocketTagger),
REG_JNI(register_android_ddm_DdmHandleNativeHeap),
REG_JNI(register_android_backup_BackupDataInput),
REG_JNI(register_android_backup_BackupDataOutput),
REG_JNI(register_android_backup_FileBackupHelperBase),
REG_JNI(register_android_backup_BackupHelperDispatcher),
REG_JNI(register_android_app_backup_FullBackup),
REG_JNI(register_android_app_Activity),
REG_JNI(register_android_app_ActivityThread),
REG_JNI(register_android_app_NativeActivity),
REG_JNI(register_android_util_jar_StrictJarFile),
REG_JNI(register_android_view_InputChannel),
REG_JNI(register_android_view_InputEventReceiver),
REG_JNI(register_android_view_InputEventSender),
REG_JNI(register_android_view_InputQueue),
REG_JNI(register_android_view_KeyEvent),
REG_JNI(register_android_view_MotionEvent),
REG_JNI(register_android_view_PointerIcon),
REG_JNI(register_android_view_VelocityTracker),
REG_JNI(register_android_view_VerifiedKeyEvent),
REG_JNI(register_android_view_VerifiedMotionEvent),
REG_JNI(register_android_content_res_ObbScanner),
REG_JNI(register_android_content_res_Configuration),
REG_JNI(register_android_animation_PropertyValuesHolder),
REG_JNI(register_android_security_Scrypt),
REG_JNI(register_com_android_internal_content_NativeLibraryHelper),
REG_JNI(register_com_android_internal_os_FuseAppLoop),
REG_JNI(register_com_android_internal_os_KernelCpuUidBpfMapReader),
REG_JNI(register_com_android_internal_os_KernelSingleUidTimeReader),
};
代码如下:
可以看到这边通过反射调用了com.android.internal.os.ZygoteInit的main方法。
注:C/C++调用java代码一般是通过反射调用
//放射调用ZygoteInit.java 的main()方法
//这里的className 是app_main.cpp的main()方法里面
//执行runtime.start("com.android.internal.os.ZygoteInit", args, zygote)
//传入的com.android.internal.os.ZygoteInit
char* slashClassName = toSlashClassName(className != NULL ? className : "");
//找到com.android.internal.os.ZygoteInit类
jclass startClass = env->FindClass(slashClassName);
if (startClass == NULL) {
}else {
//找到com.android.internal.os.ZygoteInit类的main方法
jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
"([Ljava/lang/String;)V");
if (startMeth == NULL) {
ALOGE("JavaVM unable to find main() in '%s'\n", className);
/* keep going */
} else {
// 进入zygoteInit.main,将zygoteinit带入java世界
//反射执行ZygoteInit.java 的main()方法,由此过渡到java层
env->CallStaticVoidMethod(startClass, startMeth, strArray);
}
}
zygoteInit的main代码方法如下:
public static void main(String argv[]) {
ZygoteServer zygoteServer = null;
// Mark zygote start. This ensures that thread creation will throw
// an error.
ZygoteHooks.startZygoteNoThreadCreation();
// Zygote goes into its own process group.
try {
Os.setpgid(0, 0);
} catch (ErrnoException ex) {
throw new RuntimeException("Failed to setpgid(0,0)", ex);
}
Runnable caller;
try {
// Store now for StatsLogging later.
final long startTime = SystemClock.elapsedRealtime();
final boolean isRuntimeRestarted = "1".equals(
SystemProperties.get("sys.boot_completed"));
String bootTimeTag = Process.is64Bit() ? "Zygote64Timing" : "Zygote32Timing";
TimingsTraceLog bootTimingsTraceLog = new TimingsTraceLog(bootTimeTag,
Trace.TRACE_TAG_DALVIK);
bootTimingsTraceLog.traceBegin("ZygoteInit");
RuntimeInit.preForkInit();
boolean startSystemServer = false;
String zygoteSocketName = "zygote";
String abiList = null;
boolean enableLazyPreload = false;
for (int i = 1; i < argv.length; i++) {
if ("start-system-server".equals(argv[i])) {
startSystemServer = true;
} else if ("--enable-lazy-preload".equals(argv[i])) {
enableLazyPreload = true;
} else if (argv[i].startsWith(ABI_LIST_ARG)) {
abiList = argv[i].substring(ABI_LIST_ARG.length());
} else if (argv[i].startsWith(SOCKET_NAME_ARG)) {
zygoteSocketName = argv[i].substring(SOCKET_NAME_ARG.length());
} else {
throw new RuntimeException("Unknown command line argument: " + argv[i]);
}
}
final boolean isPrimaryZygote = zygoteSocketName.equals(Zygote.PRIMARY_SOCKET_NAME);
if (!isRuntimeRestarted) {
if (isPrimaryZygote) {
FrameworkStatsLog.write(FrameworkStatsLog.BOOT_TIME_EVENT_ELAPSED_TIME_REPORTED,
BOOT_TIME_EVENT_ELAPSED_TIME__EVENT__ZYGOTE_INIT_START,
startTime);
} else if (zygoteSocketName.equals(Zygote.SECONDARY_SOCKET_NAME)) {
FrameworkStatsLog.write(FrameworkStatsLog.BOOT_TIME_EVENT_ELAPSED_TIME_REPORTED,
BOOT_TIME_EVENT_ELAPSED_TIME__EVENT__SECONDARY_ZYGOTE_INIT_START,
startTime);
}
}
if (abiList == null) {
throw new RuntimeException("No ABI list supplied.");
}
// In some configurations, we avoid preloading resources and classes eagerly.
// In such cases, we will preload things prior to our first fork.
if (!enableLazyPreload) {
bootTimingsTraceLog.traceBegin("ZygotePreload");
EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
SystemClock.uptimeMillis());
// step1 重要的函数 preload
preload(bootTimingsTraceLog);
EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
SystemClock.uptimeMillis());
bootTimingsTraceLog.traceEnd(); // ZygotePreload
}
// Do an initial gc to clean up after startup
bootTimingsTraceLog.traceBegin("PostZygoteInitGC");
gcAndFinalize();
bootTimingsTraceLog.traceEnd(); // PostZygoteInitGC
bootTimingsTraceLog.traceEnd(); // ZygoteInit
Zygote.initNativeState(isPrimaryZygote);
ZygoteHooks.stopZygoteNoThreadCreation();
//Step2 重要函数 创建socket服务
zygoteServer = new ZygoteServer(isPrimaryZygote);
if (startSystemServer) {
//Zygote Fork出的第一个进程 system_server
Runnable r = forkSystemServer(abiList, zygoteSocketName, zygoteServer);
// {@code r == null} in the parent (zygote) process, and {@code r != null} in the
// child (system_server) process.
if (r != null) {
r.run();
return;
}
}
Log.i(TAG, "Accepting command socket connections");
// The select loop returns early in the child process after a fork and
// loops forever in the zygote.
//循环等待fork出其他的应用进程,比如Launcher,比如app
caller = zygoteServer.runSelectLoop(abiList);
} catch (Throwable ex) {
Log.e(TAG, "System zygote died with exception", ex);
throw ex;
} finally {
if (zygoteServer != null) {
zygoteServer.closeServerSocket();
}
}
// We're in the child process and have exited the select loop. Proceed to execute the
// command.
if (caller != null) {
//执行返回的Runnable对象,进入子进程
caller.run();
}
}
从代码中可以看出有四个重要的步骤:加载资源---》preload(bootTimingsTraceLog),创建socket服务---》zygoteServer = new ZygoteServer(isPrimaryZygote),Zygote Fork出的第一个进程 system_server---》Runnable r = forkSystemServer(abiList, zygoteSocketName, zygoteServer),循环等待fork出其他的应用进程,比如Launcher,比如app---》caller = zygoteServer.runSelectLoop(abiList);
代码如下:
可以看到都是加载一些资源的代码。特别注意preloadClasses()方法,这个方法加载系统类。我们使用一些三方的库或者需要先implementation一下,把包编译到app里面。但是使用ImageView的时候不用implementation,原因就是在preloadClasses帮我们引入了。
static void preload(TimingsTraceLog bootTimingsTraceLog) {
Log.d(TAG, "begin preload");
bootTimingsTraceLog.traceBegin("BeginPreload");
beginPreload();
bootTimingsTraceLog.traceEnd(); // BeginPreload
bootTimingsTraceLog.traceBegin("PreloadClasses");
//加载系统类,帮我们引入了一些系统资源,比如说我们使用ImageView的时候不用implementation
preloadClasses();
bootTimingsTraceLog.traceEnd(); // PreloadClasses
bootTimingsTraceLog.traceBegin("CacheNonBootClasspathClassLoaders");
cacheNonBootClasspathClassLoaders();
bootTimingsTraceLog.traceEnd(); // CacheNonBootClasspathClassLoaders
bootTimingsTraceLog.traceBegin("PreloadResources");
preloadResources();// 加载系统资源
bootTimingsTraceLog.traceEnd(); // PreloadResources
Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadAppProcessHALs");
nativePreloadAppProcessHALs();
Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
Trace.traceBegin(Trace.TRACE_TAG_DALVIK, "PreloadGraphicsDriver");
maybePreloadGraphicsDriver();
Trace.traceEnd(Trace.TRACE_TAG_DALVIK);
preloadSharedLibraries();// 加载一些共享so库,其实就三个:android、compiler_rt、jnigraphics
preloadTextResources();// 加载字体资源
// Ask the WebViewFactory to do any initialization that must run in the zygote process,
// for memory sharing purposes.
WebViewFactory.prepareWebViewInZygote();// 加载webview相关资源
endPreload();
warmUpJcaProviders();// 初始化JCA安全相关的参数
Log.d(TAG, "end preload");
sPreloadComplete = true;
}
C/S模式
AMS发送socket
ZygoteServer里面都是服务器,不仅仅要接收AMS发送的socket还要接收其他的socket
forkSystemServer方法代码如下:
可以看到最后是调用了handleSystemServerProcess方法。
private static Runnable forkSystemServer(String abiList, String socketName,
ZygoteServer zygoteServer) {
long capabilities = posixCapabilitiesAsBits(
OsConstants.CAP_IPC_LOCK,
OsConstants.CAP_KILL,
OsConstants.CAP_NET_ADMIN,
OsConstants.CAP_NET_BIND_SERVICE,
OsConstants.CAP_NET_BROADCAST,
OsConstants.CAP_NET_RAW,
OsConstants.CAP_SYS_MODULE,
OsConstants.CAP_SYS_NICE,
OsConstants.CAP_SYS_PTRACE,
OsConstants.CAP_SYS_TIME,
OsConstants.CAP_SYS_TTY_CONFIG,
OsConstants.CAP_WAKE_ALARM,
OsConstants.CAP_BLOCK_SUSPEND
);
/* Containers run without some capabilities, so drop any caps that are not available. */
StructCapUserHeader header = new StructCapUserHeader(
OsConstants._LINUX_CAPABILITY_VERSION_3, 0);
StructCapUserData[] data;
try {
data = Os.capget(header);
} catch (ErrnoException ex) {
throw new RuntimeException("Failed to capget()", ex);
}
capabilities &= ((long) data[0].effective) | (((long) data[1].effective) << 32);
/* Hardcoded command line to start the system server */
//注意,这边的"com.android.server.SystemServer"最后会传递到findStaticMain方法里面,
//反射创建"com.android.server.SystemServer"的main方法
String args[] = {
"--setuid=1000",
"--setgid=1000",
"--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1023,"
+ "1024,1032,1065,3001,3002,3003,3006,3007,3009,3010,3011",
"--capabilities=" + capabilities + "," + capabilities,
"--nice-name=system_server",
"--runtime-args",
"--target-sdk-version=" + VMRuntime.SDK_VERSION_CUR_DEVELOPMENT,
"com.android.server.SystemServer",
};
ZygoteArguments parsedArgs = null;
int pid;
try {
parsedArgs = new ZygoteArguments(args);
Zygote.applyDebuggerSystemProperty(parsedArgs);
Zygote.applyInvokeWithSystemProperty(parsedArgs);
if (Zygote.nativeSupportsTaggedPointers()) {
/* Enable pointer tagging in the system server. Hardware support for this is present
* in all ARMv8 CPUs. */
parsedArgs.mRuntimeFlags |= Zygote.MEMORY_TAG_LEVEL_TBI;
}
/* Enable gwp-asan on the system server with a small probability. This is the same
* policy as applied to native processes and system apps. */
parsedArgs.mRuntimeFlags |= Zygote.GWP_ASAN_LEVEL_LOTTERY;
if (shouldProfileSystemServer()) {
parsedArgs.mRuntimeFlags |= Zygote.PROFILE_SYSTEM_SERVER;
}
/* Request to fork the system server process */
pid = Zygote.forkSystemServer(
parsedArgs.mUid, parsedArgs.mGid,
parsedArgs.mGids,
parsedArgs.mRuntimeFlags,
null,
parsedArgs.mPermittedCapabilities,
parsedArgs.mEffectiveCapabilities);
} catch (IllegalArgumentException ex) {
throw new RuntimeException(ex);
}
/* For child process */
if (pid == 0) {
if (hasSecondZygote(abiList)) {
waitForSecondaryZygote(socketName);
}
zygoteServer.closeServerSocket();
//parsedArgs里面存储了"com.android.server.SystemServer"类名
return handleSystemServerProcess(parsedArgs);
}
return null;
}
handleSystemServerProcess方法代码如下:
可以看到最后执行了ZygoteInit.zygoteInit(parsedArgs.mTargetSdkVersion,
parsedArgs.mDisabledCompatChanges,
parsedArgs.mRemainingArgs, cl)方法。
/**
* Finish remaining work for the newly forked system server process.
*/
private static Runnable handleSystemServerProcess(ZygoteArguments parsedArgs) {
......
/*
* Pass the remaining arguments to SystemServer.
*/
//parsedArgs.mRemainingArgs是"com.android.server.SystemServer"
return ZygoteInit.zygoteInit(parsedArgs.mTargetSdkVersion,
parsedArgs.mDisabledCompatChanges,
parsedArgs.mRemainingArgs, cl);
}
/* should never reach here */
}
ZygoteInit.zygoteInit代码如下:
可以看到最后调用RuntimeInit.applicationInit方法。
public static final Runnable zygoteInit(int targetSdkVersion, long[] disabledCompatChanges,
String[] argv, ClassLoader classLoader) {
if (RuntimeInit.DEBUG) {
Slog.d(RuntimeInit.TAG, "RuntimeInit: Starting application from zygote");
}
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ZygoteInit");
RuntimeInit.redirectLogStreams();
RuntimeInit.commonInit();//初始化运行环境
ZygoteInit.nativeZygoteInit();//启动Binder ,方法在 androidRuntime.cpp中注册
// 通过反射创建程序入口函数的 Method 对象,并返回 Runnable 对象
return RuntimeInit.applicationInit(targetSdkVersion, disabledCompatChanges, argv,
classLoader);
}
RuntimeInit.applicationInit代码如下:
可以看到最后执行了findStaticMain方法。
protected static Runnable applicationInit(int targetSdkVersion, long[] disabledCompatChanges,
String[] argv, ClassLoader classLoader) {
// If the application calls System.exit(), terminate the process
// immediately without running any shutdown hooks. It is not possible to
// shutdown an Android application gracefully. Among other things, the
// Android runtime shutdown hooks close the Binder driver, which can cause
// leftover running threads to crash before the process actually exits.
nativeSetExitWithoutCleanup(true);
VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);
VMRuntime.getRuntime().setDisabledCompatChanges(disabledCompatChanges);
final Arguments args = new Arguments(argv);
// The end of of the RuntimeInit event (see #zygoteInit).
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
// Remaining arguments are passed to the start class's static main
// startClass: 如果AMS通过socket传递过来的是 ActivityThread
return findStaticMain(args.startClass, args.startArgs, classLoader);
}
findStaticMain代码如下:
protected static Runnable findStaticMain(String className, String[] argv,
ClassLoader classLoader) {
Class> cl;
try {
cl = Class.forName(className, true, classLoader);
} catch (ClassNotFoundException ex) {
throw new RuntimeException(
"Missing class when invoking static main " + className,
ex);
}
Method m;
try {
// 通过反射拿到对应类的main方法的Method对象
m = cl.getMethod("main", new Class[] { String[].class });
} catch (NoSuchMethodException ex) {
throw new RuntimeException(
"Missing static main on " + className, ex);
} catch (SecurityException ex) {
throw new RuntimeException(
"Problem getting static main on " + className, ex);
}
int modifiers = m.getModifiers();
if (! (Modifier.isStatic(modifiers) && Modifier.isPublic(modifiers))) {
throw new RuntimeException(
"Main method is not public and static on " + className);
}
/*
* This throw gets caught in ZygoteInit.main(), which responds
* by invoking the exception's run() method. This arrangement
* clears up all the stack frames that were required in setting
* up the process.
*/
return new MethodAndArgsCaller(m, argv);
}
通过这几个一系列的函数调用,我们可以看到在forkSystemServer方法中定义了"com.android.server.SystemServer"类名,最后传递到findStaticMain方法中通过反射创建了SystemServer得main方法。
同理我们可以知道app需要跑起来,会反射调用ActivityThread的main方法。
runSelectLoop代码如下:
Runnable runSelectLoop(String abiList) {
ArrayList socketFDs = new ArrayList<>();
ArrayList peers = new ArrayList<>();
//mZygoteSocket 是socket通信中的服务端,即zygote进程。保存到socketFDs[0]
socketFDs.add(mZygoteSocket.getFileDescriptor());
peers.add(null);
mUsapPoolRefillTriggerTimestamp = INVALID_TIMESTAMP;
while (true) {
fetchUsapPoolPolicyPropsWithMinInterval();
mUsapPoolRefillAction = UsapPoolRefillAction.NONE;
int[] usapPipeFDs = null;
//每次循环,都重新创建需要监听的pollFds
StructPollfd[] pollFDs;
// Allocate enough space for the poll structs, taking into account
// the state of the USAP pool for this Zygote (could be a
// regular Zygote, a WebView Zygote, or an AppZygote).
if (mUsapPoolEnabled) {
usapPipeFDs = Zygote.getUsapPipeFDs();
pollFDs = new StructPollfd[socketFDs.size() + 1 + usapPipeFDs.length];
} else {
pollFDs = new StructPollfd[socketFDs.size()];
}
/*
* For reasons of correctness the USAP pool pipe and event FDs
* must be processed before the session and server sockets. This
* is to ensure that the USAP pool accounting information is
* accurate when handling other requests like API blacklist
* exemptions.
*/
int pollIndex = 0;
for (FileDescriptor socketFD : socketFDs) {
pollFDs[pollIndex] = new StructPollfd();
pollFDs[pollIndex].fd = socketFD;
//关注事件的到来
pollFDs[pollIndex].events = (short) POLLIN;
++pollIndex;
}
final int usapPoolEventFDIndex = pollIndex;
if (mUsapPoolEnabled) {
pollFDs[pollIndex] = new StructPollfd();
pollFDs[pollIndex].fd = mUsapPoolEventFD;
pollFDs[pollIndex].events = (short) POLLIN;
++pollIndex;
// The usapPipeFDs array will always be filled in if the USAP Pool is enabled.
assert usapPipeFDs != null;
for (int usapPipeFD : usapPipeFDs) {
FileDescriptor managedFd = new FileDescriptor();
managedFd.setInt$(usapPipeFD);
pollFDs[pollIndex] = new StructPollfd();
pollFDs[pollIndex].fd = managedFd;
pollFDs[pollIndex].events = (short) POLLIN;
++pollIndex;
}
}
int pollTimeoutMs;
if (mUsapPoolRefillTriggerTimestamp == INVALID_TIMESTAMP) {
pollTimeoutMs = -1;
} else {
long elapsedTimeMs = System.currentTimeMillis() - mUsapPoolRefillTriggerTimestamp;
if (elapsedTimeMs >= mUsapPoolRefillDelayMs) {
// Normalize the poll timeout value when the time between one poll event and the
// next pushes us over the delay value. This prevents poll receiving a 0
// timeout value, which would result in it returning immediately.
pollTimeoutMs = -1;
} else if (elapsedTimeMs <= 0) {
// This can occur if the clock used by currentTimeMillis is reset, which is
// possible because it is not guaranteed to be monotonic. Because we can't tell
// how far back the clock was set the best way to recover is to simply re-start
// the respawn delay countdown.
pollTimeoutMs = mUsapPoolRefillDelayMs;
} else {
pollTimeoutMs = (int) (mUsapPoolRefillDelayMs - elapsedTimeMs);
}
}
int pollReturnValue;
try {
//处理轮询状态,当pollFds有事件到来则往下执行,否则阻塞在这里
pollReturnValue = Os.poll(pollFDs, pollTimeoutMs);
} catch (ErrnoException ex) {
throw new RuntimeException("poll failed", ex);
}
if (pollReturnValue == 0) {
// The poll timeout has been exceeded. This only occurs when we have finished the
// USAP pool refill delay period.
mUsapPoolRefillTriggerTimestamp = INVALID_TIMESTAMP;
mUsapPoolRefillAction = UsapPoolRefillAction.DELAYED;
} else {
boolean usapPoolFDRead = false;
/*注意这里是倒序处理的,网上有的博客说是优先处理已建立连接的信息,后处理新建连接的请求
* 我觉得这个表述不是很正确,我觉得采用倒序是为了先处理已经建立连接的请求,
*但是这个优先反而是后面建立连接的请求有数据到来是优先处理了
* 然后接着最后处理 mZygoteSocket,此时即有新的客户端要求建立连接
*/
while (--pollIndex >= 0) {
// 采用I/O多路复用机制,当接收到客户端发出连接请求 或者数据处理请求到来,则往下执行;
// 否则进入continue,跳出本次循环。
if ((pollFDs[pollIndex].revents & POLLIN) == 0) {
continue;
}
if (pollIndex == 0) {
// Zygote server socket
// 即socketFDs[0],代表的是 mZygoteSocket 因为它最先加入,则意味着有客户端连接请求;
// 则创建ZygoteConnection对象,并添加到socketFDs。
ZygoteConnection newPeer = acceptCommandPeer(abiList);
// 加入到peers和socketFDs,下一次也开始监听
peers.add(newPeer);
socketFDs.add(newPeer.getFileDescriptor());
} else if (pollIndex < usapPoolEventFDIndex) {
// Session socket accepted from the Zygote server socket
try {
//pollIndex>0,则代表通过socket接收来自对端的数据,并执行相应操作
ZygoteConnection connection = peers.get(pollIndex);
///重要细节///
// 进行进程的处理:创建进程
final Runnable command = connection.processOneCommand(this);
// TODO (chriswailes): Is this extra check necessary?
if (mIsForkChild) {
// We're in the child. We should always have a command to run at
// this stage if processOneCommand hasn't called "exec".
if (command == null) {
throw new IllegalStateException("command == null");
}
return command;
} else {
// We're in the server - we should never have any commands to run.
if (command != null) {
throw new IllegalStateException("command != null");
}
// We don't know whether the remote side of the socket was closed or
// not until we attempt to read from it from processOneCommand. This
// shows up as a regular POLLIN event in our regular processing
// loop.
if (connection.isClosedByPeer()) {
connection.closeSocket();
peers.remove(pollIndex);
socketFDs.remove(pollIndex);//处理完则从socketFDs中移除该文件描述符
}
}
} catch (Exception e) {
if (!mIsForkChild) {
// We're in the server so any exception here is one that has taken
// place pre-fork while processing commands or reading / writing
// from the control socket. Make a loud noise about any such
// exceptions so that we know exactly what failed and why.
Slog.e(TAG, "Exception executing zygote command: ", e);
// Make sure the socket is closed so that the other end knows
// immediately that something has gone wrong and doesn't time out
// waiting for a response.
ZygoteConnection conn = peers.remove(pollIndex);
conn.closeSocket();
socketFDs.remove(pollIndex);
} else {
// We're in the child so any exception caught here has happened post
// fork and before we execute ActivityThread.main (or any other
// main() method). Log the details of the exception and bring down
// the process.
Log.e(TAG, "Caught post-fork exception in child process.", e);
throw e;
}
} finally {
// Reset the child flag, in the event that the child process is a child-
// zygote. The flag will not be consulted this loop pass after the
// Runnable is returned.
mIsForkChild = false;
}
} else {
// Either the USAP pool event FD or a USAP reporting pipe.
// If this is the event FD the payload will be the number of USAPs removed.
// If this is a reporting pipe FD the payload will be the PID of the USAP
// that was just specialized. The `continue` statements below ensure that
// the messagePayload will always be valid if we complete the try block
// without an exception.
long messagePayload;
try {
byte[] buffer = new byte[Zygote.USAP_MANAGEMENT_MESSAGE_BYTES];
int readBytes =
Os.read(pollFDs[pollIndex].fd, buffer, 0, buffer.length);
if (readBytes == Zygote.USAP_MANAGEMENT_MESSAGE_BYTES) {
DataInputStream inputStream =
new DataInputStream(new ByteArrayInputStream(buffer));
messagePayload = inputStream.readLong();
} else {
Log.e(TAG, "Incomplete read from USAP management FD of size "
+ readBytes);
continue;
}
} catch (Exception ex) {
if (pollIndex == usapPoolEventFDIndex) {
Log.e(TAG, "Failed to read from USAP pool event FD: "
+ ex.getMessage());
} else {
Log.e(TAG, "Failed to read from USAP reporting pipe: "
+ ex.getMessage());
}
continue;
}
if (pollIndex > usapPoolEventFDIndex) {
Zygote.removeUsapTableEntry((int) messagePayload);
}
usapPoolFDRead = true;
}
}
if (usapPoolFDRead) {
int usapPoolCount = Zygote.getUsapPoolCount();
if (usapPoolCount < mUsapPoolSizeMin) {
// Immediate refill
mUsapPoolRefillAction = UsapPoolRefillAction.IMMEDIATE;
} else if (mUsapPoolSizeMax - usapPoolCount >= mUsapPoolRefillThreshold) {
// Delayed refill
mUsapPoolRefillTriggerTimestamp = System.currentTimeMillis();
}
}
}
if (mUsapPoolRefillAction != UsapPoolRefillAction.NONE) {
int[] sessionSocketRawFDs =
socketFDs.subList(1, socketFDs.size())
.stream()
.mapToInt(FileDescriptor::getInt$)
.toArray();
final boolean isPriorityRefill =
mUsapPoolRefillAction == UsapPoolRefillAction.IMMEDIATE;
final Runnable command =
fillUsapPool(sessionSocketRawFDs, isPriorityRefill);
if (command != null) {
return command;
} else if (isPriorityRefill) {
// Schedule a delayed refill to finish refilling the pool.
mUsapPoolRefillTriggerTimestamp = System.currentTimeMillis();
}
}
}
}
可以看出里面是一个死循环,不断的轮询,如果socket有消息就fork进程出来。
思考:这边的死循环是不是和init进程一样,使用了linux的epoll机制休眠。
我们知道启动system_server进程是通过反射执行system_server的main函数来实现的。
SystemServer主要代码如下:
public static void main(String[] args) {
new SystemServer().run();
}
public SystemServer() {
// Check for factory test mode.
mFactoryTestMode = FactoryTest.getMode();
// Record process start information.
// Note SYSPROP_START_COUNT will increment by *2* on a FDE device when it fully boots;
// one for the password screen, second for the actual boot.
mStartCount = SystemProperties.getInt(SYSPROP_START_COUNT, 0) + 1;
mRuntimeStartElapsedTime = SystemClock.elapsedRealtime();
mRuntimeStartUptime = SystemClock.uptimeMillis();
Process.setStartTimes(mRuntimeStartElapsedTime, mRuntimeStartUptime);
// Remember if it's runtime restart(when sys.boot_completed is already set) or reboot
// We don't use "mStartCount > 1" here because it'll be wrong on a FDE device.
// TODO: mRuntimeRestart will *not* be set to true if the proccess crashes before
// sys.boot_completed is set. Fix it.
mRuntimeRestart = "1".equals(SystemProperties.get("sys.boot_completed"));
}
private void run() {
TimingsTraceAndSlog t = new TimingsTraceAndSlog();
try {
t.traceBegin("InitBeforeStartServices");
// Record the process start information in sys props.
SystemProperties.set(SYSPROP_START_COUNT, String.valueOf(mStartCount));
SystemProperties.set(SYSPROP_START_ELAPSED, String.valueOf(mRuntimeStartElapsedTime));
SystemProperties.set(SYSPROP_START_UPTIME, String.valueOf(mRuntimeStartUptime));
EventLog.writeEvent(EventLogTags.SYSTEM_SERVER_START,
mStartCount, mRuntimeStartUptime, mRuntimeStartElapsedTime);
//
// Default the timezone property to GMT if not set.
//
String timezoneProperty = SystemProperties.get("persist.sys.timezone");
if (timezoneProperty == null || timezoneProperty.isEmpty()) {
Slog.w(TAG, "Timezone not set; setting to GMT.");
SystemProperties.set("persist.sys.timezone", "GMT");
}
// If the system has "persist.sys.language" and friends set, replace them with
// "persist.sys.locale". Note that the default locale at this point is calculated
// using the "-Duser.locale" command line flag. That flag is usually populated by
// AndroidRuntime using the same set of system properties, but only the system_server
// and system apps are allowed to set them.
//
// NOTE: Most changes made here will need an equivalent change to
// core/jni/AndroidRuntime.cpp
if (!SystemProperties.get("persist.sys.language").isEmpty()) {
final String languageTag = Locale.getDefault().toLanguageTag();
SystemProperties.set("persist.sys.locale", languageTag);
SystemProperties.set("persist.sys.language", "");
SystemProperties.set("persist.sys.country", "");
SystemProperties.set("persist.sys.localevar", "");
}
// The system server should never make non-oneway calls
Binder.setWarnOnBlocking(true);
// The system server should always load safe labels
PackageItemInfo.forceSafeLabels();
// Default to FULL within the system server.
SQLiteGlobal.sDefaultSyncMode = SQLiteGlobal.SYNC_MODE_FULL;
// Deactivate SQLiteCompatibilityWalFlags until settings provider is initialized
SQLiteCompatibilityWalFlags.init(null);
// Here we go!
Slog.i(TAG, "Entered the Android system server!");
final long uptimeMillis = SystemClock.elapsedRealtime();
EventLog.writeEvent(EventLogTags.BOOT_PROGRESS_SYSTEM_RUN, uptimeMillis);
if (!mRuntimeRestart) {
FrameworkStatsLog.write(FrameworkStatsLog.BOOT_TIME_EVENT_ELAPSED_TIME_REPORTED,
FrameworkStatsLog
.BOOT_TIME_EVENT_ELAPSED_TIME__EVENT__SYSTEM_SERVER_INIT_START,
uptimeMillis);
}
// In case the runtime switched since last boot (such as when
// the old runtime was removed in an OTA), set the system
// property so that it is in sync. We can't do this in
// libnativehelper's JniInvocation::Init code where we already
// had to fallback to a different runtime because it is
// running as root and we need to be the system user to set
// the property. http://b/11463182
SystemProperties.set("persist.sys.dalvik.vm.lib.2", VMRuntime.getRuntime().vmLibrary());
// Mmmmmm... more memory!
VMRuntime.getRuntime().clearGrowthLimit();
// Some devices rely on runtime fingerprint generation, so make sure
// we've defined it before booting further.
Build.ensureFingerprintProperty();
// Within the system server, it is an error to access Environment paths without
// explicitly specifying a user.
Environment.setUserRequired(true);
// Within the system server, any incoming Bundles should be defused
// to avoid throwing BadParcelableException.
BaseBundle.setShouldDefuse(true);
// Within the system server, when parceling exceptions, include the stack trace
Parcel.setStackTraceParceling(true);
// Ensure binder calls into the system always run at foreground priority.
BinderInternal.disableBackgroundScheduling(true);
// Increase the number of binder threads in system_server
BinderInternal.setMaxThreads(sMaxBinderThreads);
// Prepare the main looper thread (this thread).
android.os.Process.setThreadPriority(
android.os.Process.THREAD_PRIORITY_FOREGROUND);
android.os.Process.setCanSelfBackground(false);
Looper.prepareMainLooper();
Looper.getMainLooper().setSlowLogThresholdMs(
SLOW_DISPATCH_THRESHOLD_MS, SLOW_DELIVERY_THRESHOLD_MS);
SystemServiceRegistry.sEnableServiceNotFoundWtf = true;
// Initialize native services.
System.loadLibrary("android_servers");
// Allow heap / perf profiling.
initZygoteChildHeapProfiling();
// Debug builds - spawn a thread to monitor for fd leaks.
if (Build.IS_DEBUGGABLE) {
spawnFdLeakCheckThread();
}
// Check whether we failed to shut down last time we tried.
// This call may not return.
performPendingShutdown();
// Initialize the system context.
// 创建进程的context
createSystemContext();
// Call per-process mainline module initialization.
ActivityThread.initializeMainlineModules();
// Create the system service manager.
mSystemServiceManager = new SystemServiceManager(mSystemContext);
mSystemServiceManager.setStartInfo(mRuntimeRestart,
mRuntimeStartElapsedTime, mRuntimeStartUptime);
LocalServices.addService(SystemServiceManager.class, mSystemServiceManager);
// Prepare the thread pool for init tasks that can be parallelized
SystemServerInitThreadPool.start();
// Attach JVMTI agent if this is a debuggable build and the system property is set.
if (Build.IS_DEBUGGABLE) {
// Property is of the form "library_path=parameters".
String jvmtiAgent = SystemProperties.get("persist.sys.dalvik.jvmtiagent");
if (!jvmtiAgent.isEmpty()) {
int equalIndex = jvmtiAgent.indexOf('=');
String libraryPath = jvmtiAgent.substring(0, equalIndex);
String parameterList =
jvmtiAgent.substring(equalIndex + 1, jvmtiAgent.length());
// Attach the agent.
try {
Debug.attachJvmtiAgent(libraryPath, parameterList, null);
} catch (Exception e) {
Slog.e("System", "*************************************************");
Slog.e("System", "********** Failed to load jvmti plugin: " + jvmtiAgent);
}
}
}
} finally {
t.traceEnd(); // InitBeforeStartServices
}
// Setup the default WTF handler
RuntimeInit.setDefaultApplicationWtfHandler(SystemServer::handleEarlySystemWtf);
// Start services.
try {
t.traceBegin("StartServices");
startBootstrapServices(t);
startCoreServices(t);
startOtherServices(t);
} catch (Throwable ex) {
Slog.e("System", "******************************************");
Slog.e("System", "************ Failure starting system services", ex);
throw ex;
} finally {
t.traceEnd(); // StartServices
}
StrictMode.initVmDefaults(null);
if (!mRuntimeRestart && !isFirstBootOrUpgrade()) {
final long uptimeMillis = SystemClock.elapsedRealtime();
FrameworkStatsLog.write(FrameworkStatsLog.BOOT_TIME_EVENT_ELAPSED_TIME_REPORTED,
FrameworkStatsLog.BOOT_TIME_EVENT_ELAPSED_TIME__EVENT__SYSTEM_SERVER_READY,
uptimeMillis);
final long maxUptimeMillis = 60 * 1000;
if (uptimeMillis > maxUptimeMillis) {
Slog.wtf(SYSTEM_SERVER_TIMING_TAG,
"SystemServer init took too long. uptimeMillis=" + uptimeMillis);
}
}
// Diagnostic to ensure that the system is in a base healthy state. Done here as a common
// non-zygote process.
if (!VMRuntime.hasBootImageSpaces()) {
Slog.wtf(TAG, "Runtime is not running with a boot image!");
}
// Loop forever.
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
整个代码流程可以使用这张图来概括一下:
其中最重要的代码是:
startBootstrapServices(t);
startCoreServices(t);
startOtherServices(t);
这三个方法创建90多个服务(AMS,WMS等),并且把这些服务的Binder添加到ServiceManger(ServiceManager是init进程负责启动的,具体是在解析init.rc配置文件时启动的)维护的表单中。
可以使用下面这张图来总结整个zygote流程
知道这些知识我们就可以来看一下Launcher进程启动app流程:Launcher先去ServiceManager中拿到AMS的Binder,然后基于AMS的Binder到system_server和AMS通信,要求发送一个消息给zygote,要求fork出app进程。
具体流程如下:
zygote没执行fork之前只有一个zygote进程,执行fork之后多了一个子进程,zygote有的东西在子进程里面都有。
如果是从init进程fork的话,需要重新创建虚拟机,注册JNI方法等
假如需要创建10个进程,AMS发送10条消息给zygote,如果是使用binder,这时候AMS是C端,zygote是S端,AMS需要拿到zygote的binder。
第一点: init进程会先创建servcieManager(AMS的binder是注册在servcieManager中的),后创建zygote。system_server进程又是zygote fork出来的,他的职责就是创建服务并且往servcieManager里面注册相应的binder。如果AMS想通过binder向Zygote发送信号,必须向ServiceManager获取Zygote的binder引用,而前提是Zygote进程中必须提前注册好才行。因为servcieManager和zygote是两个进程,不能保证zygote注册binder的时候servcieManager已经初始化好了。(本人持怀疑态度,按照这个逻辑,在system_server进程中创建好AMS等服务后,并且把对应binder注册到ServiceManager,此时ServiceManager也有可能没有初始化完成)
第二点:AMS拿到zygote的binder后,会在在binder线程池里面创建10个线程去处理这十个消息,进行十次fork。这时候如果Binder中有一个线程处于等锁的状态,fork出来的进程的Binder依旧在等锁。通过zygote fork出来的zygote进程的Binder会自己解锁,但是zygote fork出来的另外的一个进程里面的Binder没有进程可以给他解锁,一直是死锁。而socket是一个消息处理完,再处理下一个,不会出现死锁。
可参考android中AMS通知Zygote去fork进程为什么使用socket而不使用binder?_zygote为什么用socket-CSDN博客