CSMA/CD是一种基于冲突检测的载波监听多路访问技术。CSMA/CD协议要求站点在发送数据之前先监听信道。如果信道空闲,站点就可以发送数据;如果信道忙,则站点不能发送数据。但是,如果两个站点都检测到信道是空闲的,并且同时开始传送数据,那么这几乎会立即导致冲突
把IP地址解析为硬件地址,解决了同一个局域网上的主机或路由器的IP地址和硬件地址的映射问题
层间接口处提供服务的地方
逆地址解析协议,使只知道自己 硬件地址的主机能够知道其IP地址
允许主机或路由器 报告差错情况和 提供有关是否有异常情况的 报告。
IP层协议
报文种类: ICMP差错报文,ICMP询问报文
两个常见应用:
PING(工作在应用层,直接使用ICMP)
Traceroute,tracert(工作在网络层)
IGMP被称为互联网组管理协议,是TCP/IP协议族中负责IPV4组播成员管理的协议。用来在接收者主机和直接相邻的组播路由器之间建立和维护组播组成员的关系,IGMP 使用 IP 数据报传递其报文
CIDR(消除了传统的A类、B类和C类地址以及划分子网的概念,因而可以更加有效地分配IPv4的地址空间。它可以将好几个IP网络结合在一起,使用一种无类别的域际路由选择算法,使它们合并成一条路由从而较少路由表中的路由条目减轻Internet路由器的负担,提高路由器的转发速度
内部网关协议,RIP是一种基于距离矢量(Distance-Vector)算法的协议,它使用跳数(Hop Count)作为度量来衡量到达目的网络的距离。
GP 的一种,使用 迪杰斯特拉算法
LSA(链路状态通告)来在网络中的路由器之间交换网络拓扑信息
实现有效和可靠的邮件传输
使用SMTP协议的情况:
①发件人的用户代理 向发送方的 邮件服务器发送邮件
②发送方的邮件服务器 向接受方邮件服务器发送邮件
属于邮件读取协议的一种,使用客户端/服务端的工作模式, UA向 邮件服务器发出请求, “拉”取用户邮箱中的邮件
IMAP(Internet Message Access Protocol)是一种用于接收和管理电子邮件消息的协议,与POP(Post Office Protocol)类似,但具有更多的功能和灵活性。
IMAP的工作流程如下:
连接服务器:电子邮件客户端通过IMAP协议向邮件服务器发送连接请求。
认证:客户端需要提供正确的用户名和密码才能登录邮箱账户。
同步邮件:客户端向服务器发送同步邮件请求,并获取服务器上所有邮件的列表。
阅读邮件:客户端可以在服务器上浏览邮件的列表,并选择要查看的邮件。
下载附件:如果邮件中包含附件,客户端可以选择下载附件。
标记和移动邮件:客户端可以在服务器上标记邮件为已读或者未读,并将邮件移动到不同的文件夹中。
删除邮件:客户端可以删除邮件,但在IMAP协议中,邮件并不会被立即删除,而是被移动到“已删除邮件”
可在异构网络中任意计算机之间 传送文件。提 供交互式的访问,允许客户指明文件的类型与格式,允许文件具有存取权限
提供的功能:
不同种类主机系统之间的 文件传输能力
以用户权限方式提供用户对远程FTP服务器上的 文件管理能力
以匿名FTP的方式提供公用 文件共享的能力
网络的拓扑结构是指网络中各节点间的互连模式,也就是网络链路与节点的几何分布,定义了各节点间的物理与逻辑位置。
分层优点:各层之间相互独立,灵活性好,结构上可分开,易于实现与维护,有利于标准化工作。
电路交换:在两个设备之间创建一条临时的物理连接。
时分复用:TDM 通过分割时间来划分信道。
频分复用:通过分割通信线路的带宽,从而将共享的通信线路风格成几个独立的通信信道。
CSMA/CD(载波监听多点接入/碰撞检测)
确定根网桥
确定根端口
为每个局域网指定根网桥
构建生成树
网桥在数据链路层进行信息帧的存储和转发,网桥具有隔离通信,错误检测,帧格式转换和帧路由等数据链路功能。
网桥与交换机的异同:
IP地址分为5类,分别是A,B,C,D, E 类。没类地址的取址范围为:
IPv6是一种新型的网络协议,是IP协议的下一代标准。
相比于IPv4,IPv6主要有以下变化:
IPV6的单播,组播和任播
单播: 单播是一种点对点传输方式,即数据包从一个源IP地址发送到一个目的IP地址。IPv6单播包括:聚集全球单点传送地址、链路本地地址、站点本地地址其他特殊的单点传送地址;
组播: 组播是一种多对多传输方式,即数据包从一个源IP地址发送到一组目的IP地址。组播可以减少网络拥塞和带宽占用。组内的成员是动态的,可以在任意时间内加入或者退出。
任播: 任播地址是IPv6特有的地址类型,用来标识一组网络接口 发往任播的报文只会被发送到最近的一个接口。 任播地址与单播地址使用相同的地址空间,因此任播与单播的表示无任何区别; 配置时须明确表明是任播地址,以此区别单播和任播。
TCP是一种具有差错控制和拥塞控制的传输层协议。未来实现重传,要拥有差错检验和丢失检测机制;为了实现拥塞控制,必须拥有拥塞通知机制和流量调节机制;
三次握手用于通信设备连接的建立,保证数据的可靠传输。主要有三个动作,称为三次握手:
滑动串口流量控制(Sliding Window Flow Control)是一种网络传输中的流量控制机制
在TCP层,滑动串口流量控制是通过TCP协议中的TCP窗口来实现的。对于发送方,TCP窗口的大小即表示可以发送数据的最大量,而对于接收方,TCP窗口的大小则表示还可以接收多少数据。滑动串口流量控制会根据发送方和接收方的窗口大小动态地调整传输的数据量, 以保证传输的稳定性,同时避免数据传输的过程中拥塞和丢包。
在MAC层,则是通过帧的ACK机制来实现滑动窗口流量控制。发送方发送数据帧,而接收方在接收到数据帧后需要发送一个ACK帧回馈表示收到。发送方设置的发送窗口中,只有对于已经收到ACK帧的数据帧才能继续发送。当发送方收到ACK帧时,会将窗口大小进行相应的调整,以便于下一次传输。
工作原理的差异在于 TCP层的滑动窗口是在传输层上实现的,主要用来控制应用层数据的传输,而MAC层的是在数据链路层上实现的,主要用来控制帧的流量控制。 此外,TCP层的滑动窗口是由运输层协议负责维护,而MAC层的滑动窗口是由数据链路层协议负责维护。
TCP (传输控制协议) 和 UDP (用户数据报协议) 是网络传输中的两种常见协议。
TCP 是一个面向连接的协议,这意味着在进行数据传输之前,必须先建立一个网络连接。它使用三次握手来建立连接,并使用可靠的、有序的数据传输方式。TCP 在数据传输过程中会检查错误,重传丢失的数据包,确保传输的数据可靠性。TCP 适用于数据传输要求高可靠性和确保数据完整性的应用环境,如文件传输或电子邮件。
UDP 是一个无连接的协议,数据传输前不需要建立连接。UDP 不要求可靠、有序的数据传输方式,也不会检查错误或进行重传。这使得 UDP 更加快速、简单和轻量,适用于对实时性要求较高的应用环境,如实时视频或实时音频。
总的来说,TCP 适用于对数据可靠性要求较高、数据量较大的传输场景,而UDP 适用于对实时性和传输效率要求较高的场景。
功能不同:DNS(Domain Name System)解析域名和IP地址之间的映射关系,相当于互联网中的电话簿;ARP(Address Resolution Protocol)则解析MAC地址和IP地址之间的映射关系。
数据处理方式不同:DNS是应用层协议,使用UDP或TCP传输数据;ARP是数据链路层协议,以广播形式发送数据帧。
信息存储方式不同:DNS将IP地址和域名映射关系存储在DNS服务器中;ARP会将MAC地址和IP地址映射关系存储在本地ARP缓存中。
使用场景不同:DNS常用于浏览器访问网站还有电子邮件中,随着新技术的推广,许多应用都依赖DNS来解析域名;ARP一般在局域网内使用,用于寻找目标MAC地址,确定应该向哪个主机发送数据。
邮件系统组成:用户代理、邮件服务器、电子邮件协议。
数字签名的工作流程如下:
创建消息:用户使用一些计算机应用程序或工具(如 Adobe Acrobat 或 Microsoft Word)创建消息或文档。
签名消息:签名者选择一种数字签名应用程序或工具,并使用该工具创建其数字签名。数字签名算法会生成一组加密密钥,其中的私钥只有签名者知道,公钥则公开公布。签名者使用私钥加密消息的摘要,生成签名并 将其附加到消息。
发送消息:签名者将消息和数字签名一起发送给接收者。
验证签名:接收者使用相同的签名应用程序或工具验证签名。接收者使用公钥解密签名,并使用消息的摘要和签名者公布的摘要算法创建摘要。接收者然后比较两者以验证数字签名。