代码随想录算法训练营第6天 |哈希表理论基础 242.有效的字母异位词 349. 两个数组的交集 202. 快乐数 1. 两数之和

目录

哈希表理论基础

哈希碰撞

拉链法

线性探测法

常见的三种哈希结构

242.有效的字母异位词

解题思路

实现代码

遇到的问题

题目总结

349. 两个数组的交集

解题思路

实现代码

题目总结

202. 快乐数

解题思路

实现代码

题目总结

1. 两数之和

解题思路

实现代码

遇到的问题

题目总结

今日心得


哈希表理论基础

哈希表是根据关键码的值而直接进行访问的数据结构。

两个特点:

要快速判断一个元素是否出现集合里的时候,就要考虑哈希法

牺牲了空间换取了时间

数组就是一张哈希表。

哈希表中关键码就是数组的索引下标,然后通过下标直接访问数组中的元素,如下图所示:

代码随想录算法训练营第6天 |哈希表理论基础 242.有效的字母异位词 349. 两个数组的交集 202. 快乐数 1. 两数之和_第1张图片

那么哈希表能解决什么问题呢,一般哈希表都是用来快速判断一个元素是否出现集合里。

例如要查询一个名字是否在这所学校里。

要枚举的话时间复杂度是O(n),但如果使用哈希表的话, 只需要O(1)就可以做到。

我们只需要初始化把这所学校里学生的名字都存在哈希表里,在查询的时候通过索引直接就可以知道这位同学在不在这所学校里了。

将学生姓名映射到哈希表上就涉及到了hash function ,也就是哈希函数

哈希函数,把学生的姓名直接映射为哈希表上的索引,然后就可以通过查询索引下标快速知道这位同学是否在这所学校里了。

哈希函数如下图所示,通过hashCode把名字转化为数值,一般hashcode是通过特定编码方式,可以将其他数据格式转化为不同的数值,这样就把学生名字映射为哈希表上的索引数字了。

代码随想录算法训练营第6天 |哈希表理论基础 242.有效的字母异位词 349. 两个数组的交集 202. 快乐数 1. 两数之和_第2张图片

如果hashCode得到的数值大于 哈希表的大小了,也就是大于tableSize了,怎么办呢?

此时为了保证映射出来的索引数值都落在哈希表上,我们会在再次对数值做一个取模的操作,这样我们就保证了学生姓名一定可以映射到哈希表上了。

此时问题又来了,哈希表我们刚刚说过,就是一个数组。

如果学生的数量大于哈希表的大小怎么办,此时就算哈希函数计算的再均匀,也避免不了会有几位学生的名字同时映射到哈希表 同一个索引下标的位置。

接下来哈希碰撞登场

哈希碰撞

如图所示,小李和小王都映射到了索引下标 1 的位置,这一现象叫做哈希碰撞

代码随想录算法训练营第6天 |哈希表理论基础 242.有效的字母异位词 349. 两个数组的交集 202. 快乐数 1. 两数之和_第3张图片

一般哈希碰撞有两种解决方法, 拉链法和线性探测法。

拉链法

刚刚小李和小王在索引1的位置发生了冲突,发生冲突的元素都被存储在链表中。 这样我们就可以通过索引找到小李和小王了

代码随想录算法训练营第6天 |哈希表理论基础 242.有效的字母异位词 349. 两个数组的交集 202. 快乐数 1. 两数之和_第4张图片

(数据规模是dataSize, 哈希表的大小为tableSize)

其实拉链法就是要选择适当的哈希表的大小,这样既不会因为数组空值而浪费大量内存,也不会因为链表太长而在查找上浪费太多时间。

线性探测法

使用线性探测法,一定要保证tableSize大于dataSize。 我们需要依靠哈希表中的空位来解决碰撞问题。

例如冲突的位置,放了小李,那么就向下找一个空位放置小王的信息。所以要求tableSize一定要大于dataSize ,要不然哈希表上就没有空置的位置来存放 冲突的数据了。如图所示:

代码随想录算法训练营第6天 |哈希表理论基础 242.有效的字母异位词 349. 两个数组的交集 202. 快乐数 1. 两数之和_第5张图片

常见的三种哈希结构

当我们想使用哈希法来解决问题的时候,我们一般会选择如下三种数据结构。

  • 数组
  • set (集合)
  • map(映射)

这里数组就没啥可说的了,我们来看一下set。

在C++中,set 和 map 分别提供以下三种数据结构,其底层实现以及优劣如下表所示:

集合 底层实现 是否有序 数值是否可以重复 能否更改数值 查询效率 增删效率
std::set 红黑树 有序 O(log n) O(log n)
std::multiset 红黑树 有序 O(logn) O(logn)
std::unordered_set 哈希表 无序 O(1) O(1)

std::unordered_set底层实现为哈希表,std::set 和std::multiset 的底层实现是红黑树,红黑树是一种平衡二叉搜索树,所以key值是有序的,但key不可以修改,改动key值会导致整棵树的错乱,所以只能删除和增加。

映射 底层实现 是否有序 数值是否可以重复 能否更改数值 查询效率 增删效率
std::map 红黑树 key有序 key不可重复 key不可修改 O(logn) O(logn)
std::multimap 红黑树 key有序 key可重复 key不可修改 O(log n) O(log n)
std::unordered_map 哈希表 key无序 key不可重复 key不可修改 O(1) O(1)

std::unordered_map 底层实现为哈希表,std::map 和std::multimap 的底层实现是红黑树。同理,std::map 和std::multimap 的key也是有序的(这个问题也经常作为面试题,考察对语言容器底层的理解)。

当我们要使用集合来解决哈希问题的时候,优先使用unordered_set,因为它的查询和增删效率是最优的,如果需要集合是有序的,那么就用set,如果要求不仅有序还要有重复数据的话,那么就用multiset。

那么再来看一下map ,在map 是一个key value 的数据结构,map中,对key是有限制,对value没有限制的,因为key的存储方式使用红黑树实现的。

其他语言例如:java里的HashMap ,TreeMap 都是一样的原理。可以灵活贯通。

虽然std::set、std::multiset 的底层实现是红黑树,不是哈希表,std::set、std::multiset 使用红黑树来索引和存储,不过给我们的使用方式,还是哈希法的使用方式,即key和value。所以使用这些数据结构来解决映射问题的方法,我们依然称之为哈希法。 map也是一样的道理。

242.有效的字母异位词

题目链接:242. 有效的字母异位词

给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。

示例 1: 输入: s = "anagram", t = "nagaram" 输出: true

示例 2: 输入: s = "rat", t = "car" 输出: false

说明: 你可以假设字符串只包含小写字母

解题思路

数组其实就是一个简单哈希表,而且这道题目中字符串只有小写字符,那么就可以定义一个数组,来记录字符串s里字符出现的次数。

为了方便举例,判断一下字符串s= "aee", t = "eae"。

操作动画如下:

定义一个数组叫做record用来上记录字符串s里字符出现的次数。

需要把字符映射到数组也就是哈希表的索引下标上,因为字符a到字符z的ASCII是26个连续的数值,所以字符a映射为下标0,相应的字符z映射为下标25。

再遍历 字符串s的时候,只需要将 s[i] - ‘a’ 所在的元素做+1 操作即可,并不需要记住字符a的ASCII,只要求出一个相对数值就可以了。 这样就将字符串s中字符出现的次数,统计出来了。

那看一下如何检查字符串t中是否出现了这些字符,同样在遍历字符串t的时候,对t中出现的字符映射哈希表索引上的数值再做-1的操作。

那么最后检查一下,record数组如果有的元素不为零0,说明字符串s和t一定是谁多了字符或者谁少了字符,return false。

最后如果record数组所有元素都为零0,说明字符串s和t是字母异位词,return true。

时间复杂度为O(n),空间上因为定义是的一个常量大小的辅助数组,所以空间复杂度为O(1)。

实现代码

/**
 * 242. 有效的字母异位词 字典解法
 * 时间复杂度O(m+n) 空间复杂度O(1)
 */
class Solution {
    public boolean isAnagram(String s, String t) {
        int[] record = new int[26];

        for (int i = 0; i < s.length(); i++) {
            record[s.charAt(i) - 'a']++;     // 并不需要记住字符a的ASCII,只要求出一个相对数值就可以了
        }

        for (int i = 0; i < t.length(); i++) {
            record[t.charAt(i) - 'a']--;
        }
        
        for (int count: record) {
            if (count != 0) {               // record数组如果有的元素不为零0,说明字符串s和t 一定是谁多了字符或者谁少了字符。
                return false;
            }
        }
        return true;                        // record数组所有元素都为零0,说明字符串s和t是字母异位词
    }
}

遇到的问题

用s.charAt(i)-'a'来求出一个相对数值,并不需要记住每个字符的ascii码。

题目总结

349. 两个数组的交集

题目链接: 349. 两个数组的交集

题意:给定两个数组,编写一个函数来计算它们的交集。

代码随想录算法训练营第6天 |哈希表理论基础 242.有效的字母异位词 349. 两个数组的交集 202. 快乐数 1. 两数之和_第6张图片

说明: 输出结果中的每个元素一定是唯一的。 我们可以不考虑输出结果的顺序。

解题思路

这道题目,主要要学会使用一种哈希数据结构:unordered_set,这个数据结构可以解决很多类似的问题。

注意题目特意说明:输出结果中的每个元素一定是唯一的,也就是说输出的结果的去重的, 同时可以不考虑输出结果的顺序

这道题用暴力的解法时间复杂度是O(n^2),那来看看使用哈希法进一步优化。

那么用数组来做哈希表也是不错的选择,例如242. 有效的字母异位词

(opens new window)

但是要注意,使用数组来做哈希的题目,是因为题目都限制了数值的大小。

而这道题目没有限制数值的大小,就无法使用数组来做哈希表了。

而且如果哈希值比较少、特别分散、跨度非常大,使用数组就造成空间的极大浪费。

此时就要使用另一种结构体了,set ,关于set,C++ 给提供了如下三种可用的数据结构:

  • std::set
  • std::multiset
  • std::unordered_set

std::set和std::multiset底层实现都是红黑树,std::unordered_set的底层实现是哈希表, 使用unordered_set 读写效率是最高的,并不需要对数据进行排序,而且还不要让数据重复,所以选择unordered_set。

思路如图所示:

代码随想录算法训练营第6天 |哈希表理论基础 242.有效的字母异位词 349. 两个数组的交集 202. 快乐数 1. 两数之和_第7张图片

实现代码

//HashSet
import java.util.HashSet;
import java.util.Set;

class Solution {
    public int[] intersection(int[] nums1, int[] nums2) {
        if (nums1 == null || nums1.length == 0 || nums2 == null || nums2.length == 0) {
            return new int[0];
        }
        Set set1 = new HashSet<>();
        Set resSet = new HashSet<>();
        //遍历数组1
        for (int i : nums1) {
            set1.add(i);
        }
        //遍历数组2的过程中判断哈希表中是否存在该元素
        for (int i : nums2) {
            if (set1.contains(i)) {
                resSet.add(i);
            }
        }
      
        //方法1:将结果集合转为数组

        return resSet.stream().mapToInt(x -> x).toArray();
        
        //方法2:另外申请一个数组存放setRes中的元素,最后返回数组
        int[] arr = new int[resSet.size()];
        int j = 0;
        for(int i : resSet){
            arr[j++] = i;
        }
        
        return arr;
    }
}

//数组
class Solution {
    public int[] intersection(int[] nums1, int[] nums2) {
        int[] hash1 = new int[1002];
        int[] hash2 = new int[1002];
        for(int i : nums1)
            hash1[i]++;
        for(int i : nums2)
            hash2[i]++;
        List resList = new ArrayList<>();
        for(int i = 0; i < 1002; i++)
            if(hash1[i] > 0 && hash2[i] > 0)
                resList.add(i);
        int index = 0;
        int res[] = new int[resList.size()];
        for(int i : resList)
            res[index++] = i;
        return res;
    }
}

题目总结

当遇到不重复数字,就要想到可以使用set。

202. 快乐数

题目链接:202.快乐数

编写一个算法来判断一个数 n 是不是快乐数。

「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为  1,那么这个数就是快乐数。

如果 n 是快乐数就返回 True ;不是,则返回 False 。

示例:

输入:19
输出:true
解释:
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1

解题思路

这道题目看上去貌似一道数学问题,其实并不是!

题目中说了会 无限循环,那么也就是说求和的过程中,sum会重复出现,这对解题很重要!

当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法了。

所以这道题目使用哈希法,来判断这个sum是否重复出现,如果重复了就是return false, 否则一直找到sum为1为止。

判断sum是否重复出现就可以使用unordered_set。

还有一个难点就是求和的过程,如果对取数值各个位上的单数操作不熟悉的话,做这道题也会比较艰难。

实现代码

class Solution {
    public boolean isHappy(int n) {
        Set set=new HashSet<>();
        while(n!=1 && !set.contains(n)){
            set.add(n);
            n=getNumber(n);
        }
        return n==1;
    }
    public int getNumber(int n){
        int sum=0;
        while(n>0){
            int a=n%10;
            sum+=a*a;
            n=n/10;
        }
        //每次都求n的个位数平方和
        return sum;
    }
}

题目总结

每次求n的个位数,之后对个位数求平方和,在n/10进行下一步迭代。同时因为可能存在循环问题,所以还要判断数字是否重复。

1. 两数之和

题目链接:1. 两数之和

给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。

示例:

给定 nums = [2, 7, 11, 15], target = 9

因为 nums[0] + nums[1] = 2 + 7 = 9

所以返回 [0, 1]

解题思路

本题呢,我就需要一个集合来存放我们遍历过的元素,然后在遍历数组的时候去询问这个集合,某元素是否遍历过,也就是 是否出现在这个集合。

那么我们就应该想到使用哈希法了。

因为本题,我们不仅要知道元素有没有遍历过,还要知道这个元素对应的下标,需要使用 key value结构来存放,key来存元素,value来存下标,那么使用map正合适

再来看一下使用数组和set来做哈希法的局限。

  • 数组的大小是受限制的,而且如果元素很少,而哈希值太大会造成内存空间的浪费。
  • set是一个集合,里面放的元素只能是一个key,而两数之和这道题目,不仅要判断y是否存在而且还要记录y的下标位置,因为要返回x 和 y的下标。所以set 也不能用。

此时就要选择另一种数据结构:map ,map是一种key value的存储结构,可以用key保存数值,用value再保存数值所在的下标。

  • map用来做什么
  • map中key和value分别表示什么

map目的用来存放我们访问过的元素,因为遍历数组的时候,需要记录我们之前遍历过哪些元素和对应的下标,这样才能找到与当前元素相匹配的(也就是相加等于target)

接下来是map中key和value分别表示什么。

这道题 我们需要 给出一个元素,判断这个元素是否出现过,如果出现过,返回这个元素的下标。

那么判断元素是否出现,这个元素就要作为key,所以数组中的元素作为key,有key对应的就是value,value用来存下标。

所以 map中的存储结构为 {key:数据元素,value:数组元素对应的下标}。

在遍历数组的时候,只需要向map去查询是否有和目前遍历元素匹配的数值,如果有,就找到的匹配对,如果没有,就把目前遍历的元素放进map中,因为map存放的就是我们访问过的元素。

过程如下:

代码随想录算法训练营第6天 |哈希表理论基础 242.有效的字母异位词 349. 两个数组的交集 202. 快乐数 1. 两数之和_第8张图片

代码随想录算法训练营第6天 |哈希表理论基础 242.有效的字母异位词 349. 两个数组的交集 202. 快乐数 1. 两数之和_第9张图片

实现代码

public int[] twoSum(int[] nums, int target) {
    int[] res = new int[2];
    if(nums == null || nums.length == 0){
        return res;
    }
    Map map = new HashMap<>();
    for(int i = 0; i < nums.length; i++){
        int temp = target - nums[i];   // 遍历当前元素,并在map中寻找是否有匹配的key
        if(map.containsKey(temp)){
            res[1] = i;
            res[0] = map.get(temp);
            break;
        }
        map.put(nums[i], i);    // 如果没找到匹配对,就把访问过的元素和下标加入到map中
    }
    return res;
}

遇到的问题

当查找Map中是否存在某值时,要用containsKey()。

[contains为判断String类型是否包含字符串

containsKey为JSONObject是否包含某个key]

找到想要的值时别忘了及时的break;

Map加入时要用put,而不是add。

注:Map的常用方法

* public Static containsKey(Object key):判断Map集合中是否有指定的key
        
* public Static get(Object key)根据指定的键,在Map集合中获取对应的值。
         
* public V remove(Object key): 把指定的键 所对应的键值对元素 在Map集合中删除,返回被删除元素的值。
          
* public V put(K key, V value):把指定的键与指定的值添加到Map集合中。

题目总结

本题其实有四个重点:

  • 为什么会想到用哈希表
  • 哈希表为什么用map
  • 本题map是用来存什么的
  • map中的key和value用来存什么的

把这四点想清楚了,本题才算是理解透彻了。

今日心得

逐渐熟练了博客的书写,感觉速度也有提升,但是今天不小心误操作,导致内容被删了一大部分,然后又重新写,哭哭。

当遇到我们想知道一个元素是否出现在集合中的时候,我们可能就会想到用哈希表。

如果需要对重复数字去重,我们可以使用HashSet,如果需要存储下标和值,我们可以考虑使用Map。

你可能感兴趣的:(算法,散列表,数据结构)