李毓佩《数学历险记》---裂项法简算分数

李毓佩《数学历险记》—裂项法简算分数

问题描述:

计算: 1 1 ∗ 2 + 1 2 ∗ 3 + 1 3 ∗ 4 + ...+ 1 98 ∗ 99 + 1 99 ∗ 100 \frac{1}{1 * 2} + \frac{1}{2 * 3}+ \frac{1}{3 *4}+ ...+\frac{1}{98 * 99} + \frac{1}{99 * 100} 121+231+31+ ...+98991+991001
1 1 ∗ 2 + 1 2 ∗ 3 + 1 3 ∗ 4 + ...+ 1 98 ∗ 99 + 1 99 ∗ 100 \frac{1}{1 * 2} + \frac{1}{2 * 3}+ \frac{1}{3 *4}+ ...+\frac{1}{98 * 99} + \frac{1}{99 * 100} 121+231+341+ ...+98991+991001
= ( 1 1 − 1 2 ) + ( 1 2 − 1 3 ) + ( 1 3 − 1 4 ) + . . . . . + ( 1 98 − 1 99 ) + ( 1 99 − 1 100 ) = (\frac{1}{1} - \frac{1}{2}) +(\frac{1}{2} - \frac{1}{3}) +(\frac{1}{3} - \frac{1}{4}) +.....+(\frac{1}{98} - \frac{1}{99})+(\frac{1}{99} - \frac{1}{100}) =(1121)+(2131)+(3141)+.....+(981991)+(9911001)
= 1 − 1 100 =1 - \frac{1}{100} =11001
= 99 100 =\frac{99}{100} =10099
把一个分数拆成两个分数相减的形式,就是裂项法,可以根据裂项工式: 1 a ∗ b = ( 1 a − 1 b ) ∗ 1 b − a \frac{1}{a * b} = (\frac{1}{a} - \frac{1}{b}) * \frac{1}{b - a} ab1=(a1b1)ba1把一个数裂项为两个分数求差,然后前后抵消求和。裂项法是分解与组合思想在数列求和中的具体应用,通常用于代数,分数,有时候也用于整数数列求和。

裂相法求各工式
  1. 1 n ( n + 1 ) = 1 n − 1 n + 1 \frac{1}{n(n +1)} = \frac{1}{n} - \frac{1}{n+1} n(n+1)1=n1n+11
  2. 1 ( 2 n − 1 ) ( 2 n + 1 ) = 1 2 ( 1 2 n − 1 − 1 2 n + 1 ) \frac{1}{(2n-1)(2n +1)} = \frac{1}{2}(\frac{1}{2n-1} - \frac{1}{2n+1}) (2n1)(2n+1)1=21(2n112n+11)
  3. 1 n ( n + 1 ) ( n + 2 ) = 1 2 ( 1 n ( n − 1 ) − 1 ( n + 1 ) ( n + 2 ) ) \frac{1}{n(n+1)(n +2)} = \frac{1}{2}(\frac{1}{n(n-1)} - \frac{1}{(n+1)(n+2)}) n(n+1)(n+2)1=21(n(n1)1(n+1)(n+2)1)
  4. 1 a + b = 1 a − b ( a − b ) \frac{1}{\sqrt{a}+\sqrt{b}} = \frac{1}{a - b} (\sqrt{a} - \sqrt{b}) a +b 1=ab1(a b )
  5. n ∗ n ! = ( n + 1 ) ! − n ! n * n! = (n + 1)! - n! nn=(n+1)!n!
  6. 1 n ( n + k ) = 1 k ( 1 n − 1 n + k ) \frac{1}{n(n+k)} = \frac{1}{k}(\frac{1}{n} - \frac{1}{n +k}) n(n+k)1=k1(n1n+k1)
  7. 1 n + n + 1 = n + 1 − n \frac{1}{\sqrt{n}+\sqrt{n+1}} = \sqrt{n+1} - \sqrt{n} n +n+1 1=n+1 n
  8. 1 n + n + k = 1 k ( n + k − n ) \frac{1}{\sqrt{n}+\sqrt{n+k}} = \frac{1}{k} (\sqrt{n+k} - \sqrt{n}) n +n+k 1=k1(n+k n )
例: 1 1 ∗ 2 ∗ 3 + 1 2 ∗ 3 ∗ 4 + 1 3 ∗ 4 ∗ 5 + . . . + 1 97 ∗ 98 ∗ 99 + 1 98 ∗ 99 ∗ 100 \frac{1}{1 * 2*3} + \frac{1}{2*3*4}+\frac{1}{3 *4*5}+...+\frac{1}{97*98 * 99} + \frac{1}{98*99 * 100} 1231+2341+3451...+9798991+98991001

= 1 2 ( 1 1 ∗ 2 − 1 2 ∗ 3 + 1 2 ∗ 3 − 1 3 ∗ 4 + 1 3 ∗ 4 − 1 4 ∗ 5 + . . . . . + 1 97 ∗ 98 − 1 98 ∗ 99 + 1 98 ∗ 99 − 1 99 ∗ 100 ) =\frac{1}{2}(\frac{1}{1*2} - \frac{1}{2*3} +\frac{1}{2*3} - \frac{1}{3*4} +\frac{1}{3*4} - \frac{1}{4*5} +.....+\frac{1}{97*98} - \frac{1}{98*99}+\frac{1}{98*99} - \frac{1}{99*100}) =21(121231+231341+341451+.....+9798198991+98991991001)
= 1 2 ( 1 1 ∗ 2 − 1 99 ∗ 100 ) =\frac{1}{2}(\frac{1}{1*2} - \frac{1}{99*100}) =21(121991001)
= 4949 19800 =\frac{4949}{19800} =198004949

你可能感兴趣的:(算法,学习,笔记)