- 冒泡排序算法详解(含Python代码实现)
算法_小学生
算法
冒泡排序(BubbleSort)是最基础的排序算法之一,通常用于学习排序算法的入门理解。本文将通过Python代码实现冒泡排序,并详细讲解其原理、执行流程、复杂度分析及适用情况。✨一、算法简介冒泡排序的核心思想是:相邻两个元素比较,将较大的元素不断“冒泡”至右侧,最终实现排序。其基本过程是重复比较相邻的元素,如果顺序错误就交换,重复这一过程,直到没有任何需要交换的为止。二、Python代码实现下面
- SVN简介
Bu Sir
SVN初体验svn
svn介绍:1.项目管理中的版本控制问题:①解决代码冲突困难;②容易引发bug;③难于恢复至以前正确的版本;④无法进行权限控制;⑤项目版本发布困难;2.什么是版本控制:版本控制是维护工程蓝图的标准做法,能追踪工程蓝图从诞生一直到定案的过程。是一种记录若干文件内容变化,以便将来查阅特定版本修订情况的系统。3.svn是什么:SVN是版本管理工具,在当前的开源项目里(J2EE),几乎都会使用SVN。Su
- ImportError: /nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkComplete_12_4
爱编程的喵喵
Python基础课程pythonImportErrortorchnvJitLink解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:/home/
- 浅析Nordic nRF5 SDK例程架构(四)
Real你老王
架构
浅析NordicnRF5SDK例程架构第一章前言及bsp例程浅析第二章ble_app_uart例程浅析第三章添加电池电量服务(BAS)第四章如何使用的修改协议栈(以SESIDE为例)文章目录浅析NordicnRF5SDK例程架构一、概述二、修改方法三、可能出现的Debug汇总本文紧接上篇,将主要介绍如何在nRF5_sdk的ble_peripheral\ble_app_uart工程为例,在NUS服务
- 资深php工程师必会必知架构
深山技术宅
PHP经验素养php架构开发语言
作为资深PHP工程师,必须掌握以下架构设计及核心组件,这些架构能力决定了系统能否支撑高并发、高可用及复杂业务场景:一、分层架构(基础但关键)经典三层模型HTTP请求SQL表示层业务逻辑层数据访问层数据库表示层:API网关(LaravelRoutes/SymfonyRouting)业务层:领域服务(DDD设计模式应用)数据层:Repository模式+Eloquent/DoctrineORM二、高性
- CppCon 2015 学习:Beyond Sanitizers
虾球xz
CppCon学习c++开发语言
Sanitizers,一类基于编译时插桩(instrumentation)的动态测试工具,用来检测程序运行时的各种错误。Sanitizers简介基于编译时插桩:编译器在编译代码时自动插入检测代码。动态运行时检测:程序运行时实时检查错误。常见类型:ASan(AddressSanitizer):检测内存相关错误,如越界访问、使用后释放(Use-After-Free)、内存泄漏等。UBSan(Undef
- 【机器学习笔记 Ⅱ】11 决策树模型
巴伦是只猫
机器学习机器学习笔记决策树
决策树模型(DecisionTree)详解决策树是一种树形结构的监督学习模型,通过一系列规则对数据进行分类或回归。其核心思想是模仿人类决策过程,通过不断提问(基于特征划分)逐步逼近答案。1.核心概念节点类型:根节点:起始问题(最佳特征划分点)。内部节点:中间决策步骤(特征判断)。叶节点:最终预测结果(类别或数值)。分支:对应特征的取值或条件判断(如“年龄≥30?”)。2.构建决策树的关键步骤(1)
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- 【机器学习笔记Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
- 【机器学习笔记Ⅰ】6 多类特征
巴伦是只猫
机器学习机器学习笔记人工智能
多类特征(Multi-classFeatures)详解多类特征是指一个特征(变量)可以取多个离散的类别值,且这些类别之间没有内在的顺序关系。这类特征是机器学习中常见的数据类型,尤其在分类和回归问题中需要特殊处理。1.核心概念(1)什么是多类特征?定义:特征是离散的、有限的类别,且类别之间无大小或顺序关系。示例:颜色:红、绿、蓝(无顺序)。城市:北京、上海、广州(无数学意义的大小关系)。动物类别:猫
- 图像分割技术详解:从原理到实践
lanjieying
本文还有配套的精品资源,点击获取简介:图像分割是图像处理领域将图像分解为多个区域的过程,用于图像分析、特征提取等。文章介绍了图像分割的原理,并通过一个将图像划分为2*4子块的示例,展示了如何使用Python和matplotlib库中的tight_subplot函数进行图像分割和展示。文章还探讨了图像分割在不同领域的应用,以及如何在机器学习项目中作为数据预处理步骤。1.图像分割基本概念在图像处理领域
- 机器学习笔记——支持向量机
star_and_sun
机器学习笔记支持向量机
支持向量机参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题最大化间隔间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开间隔最大化的分离超平面的的求解怎么求呢?最终的方法如下1.线性可分的支持向量机的优化目标其实就是找得到分离的的超平面求得参数w和b的值就可以了注意,最大间隔分离超平面是唯一的,间隔叫硬间隔1.1
- 【机器学习&深度学习】多分类评估策略
一叶千舟
深度学习【理论】深度学习【应用必备常识】大数据人工智能
目录前言一、多分类3大策略✅宏平均(MacroAverage)✅加权平均(WeightedAverage)✅微平均(MicroAverage)二、类比理解2.1宏平均(MacroAverage)2.1.1计算方式2.1.2适合场景2.1.3宏平均不适用的场景2.1.4宏平均一般用在哪些指标上?2.1.5怎么看macroavg指标?2.1.6宏平均值低说明了什么?2.1.7从宏平均指标中定位模型短板
- Simscape入门教程
微小冷
机器人Matlabsimulinksimscape弹簧阻尼multibody
文章目录物理网络连接到Simulink运行本文是官方教程构造物理模型的基本步骤的学习笔记,旨在建立一个带有控制器的质量-弹簧-阻尼系统。物理网络在命令行中输入sscnew,即可弹出Simscape模板,基于此模板即可组建其相应的物理网络。通过添加新模块、删除无关模块,连接其物理网络如下所有模块均在Simscape->FoundationLibrary->Mechanical中,具体包括需要的模块包
- 网络安全相关专业总结(非常详细)零基础入门到精通,收藏这一篇就够了
网络安全工程师教学
兼职副业黑客技术网络安全web安全安全人工智能网络运维
一、网络工程专业专业内涵网络工程是指按计划进行的以工程化的思想、方式、方法,设计、研发和解决网络系统问题的工程,一般指计算机网络系统的开发与构建。该专业培养具备计算机科学与技术学科理论基础,掌握网络技术领域专业知识和基本技能,在计算机、网络及人工智能领域的工程实践和应用方面受到良好训练,具有深厚通信背景、可持续发展、能力较强的高水平工程技术人才。学生可在计算机软硬件系统、互联网、移动互联网及新一代
- 自学黑客(网络安全),一般人我劝你还是算了吧
网络安全工程师教学
兼职副业网络安全黑客技术web安全安全网络人工智能学习
我是一名8年半的网安工程师“老司机”,要给准备入坑的同学泼盆冷水了,网络安全真的不是一般人能学的。有人会问“你一个8年的网安老司机,为什么还给大家泼冷水”?好多人说:网安基础很简单,是个人稍微认真点都能懂,给网安打上了简单、易懂的标签。然后上来就是一波言论浮夸的输出,把一些很基础很浅显的技术点拆解出来,让小白快速上手,误导新手,让他们以为网络安全就这么回事儿,可一到真正实操,哦豁,啥也不会。这导致
- 模块化汽车基础设施的正面交锋---区域架构与域架构
汽车电子实验室
车载电子与软件框架汽车架构OEM怎么掌握软件开发能力ZEVonUDS-J1979车载通信网络槪述HPC软件架构
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是系统思考、大胆设计、小心求证;三是“一张纸制度”,也就是无论多么复杂的工作内容,要在一张纸上描述清楚;四是要坚决反对虎头蛇尾,反对繁文缛节,反对老
- “试验台铁地板:优越的选择高性能铁地板材料“
试验台铁地板的特点试验台铁地板通常采用高强度铸铁或合金材料制成,具有高稳定性、耐磨性和抗变形能力。其表面经过精密加工,确保平面度和平行度符合高精度测试需求。部分产品还会进行防锈处理,延长使用寿命。高性能铁地板的材料选择常见的材料包括HT250铸铁、球墨铸铁或特殊合金钢。HT250铸铁具有良好的吸震性和耐磨性,适合精密仪器测试;球墨铸铁强度更高,适用于重型设备试验台;特殊合金钢则用于极端环境下的高负
- 数据仓库技术及应用(Hive 产生背景与架构设计,存储模型与数据类型)
娟恋无暇
数据仓库笔记hive
1.Hive产生背景传统Hadoop架构存在的一些问题:MapReduce编程必须掌握Java,门槛较高传统数据库开发、DBA、运维人员学习门槛高HDFS上没有Schema的概念,仅仅是一个纯文本文件Hive的产生:为了让用户从一个现有数据基础架构转移到Hadoop上现有数据基础架构大多基于关系型数据库和SQL查询Facebook诞生了Hive2.Hive是什么官网:https://hive.ap
- 【机器学习笔记Ⅰ】7 向量化
巴伦是只猫
机器学习机器学习笔记人工智能
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
- STM32-架构分层与CMSIS实战指南
东方少爷
单片机单片机嵌入式硬件架构stm32硬件工程
从架构分层逻辑、CMSIS核心价值、内核与CMSIS协作关系三个维度,结合代码示例深度解析,并延伸到工程应用:一、STM32库架构分层解析(从硬件到应用)图中架构分为MCU层、CMSIS层、用户层,每层职责和文件分工明确:1.MCU层(硬件基础)包含内容:Cortex-M内核(如Cortex-M4)、SysTick、NVIC、调试模块、片上外设(GPIO、USART等)。作用:提供物理硬件能力,是
- 大模型RLHF强化学习笔记(二):强化学习基础梳理Part2
Gravity!
大模型笔记大模型LLM强化学习人工智能
【如果笔记对你有帮助,欢迎关注&点赞&收藏,收到正反馈会加快更新!谢谢支持!】一、强化学习基础1.4强化学习分类根据数据来源划分Online:智能体与环境实时交互,如Q-Learning、SARSA、Actor-CriticOffline:智能体使用预先收集的数据集进行学习根据策略更新划分On-Policy:学习和行为策略是相同的,数据是按照当前策略生成的,如SARSAOff-Policy:学习策
- 【Python】simulink与python联合仿真
1.1Simulink的边界:事件驱动、算法复杂性与AI集成瓶颈Simulink的核心优势在于其强大的微分方程求解器和对连续时间系统、离散时间系统的精确描述能力。其基于“信号流”和“框图”的建模范式,使得工程师可以直观地构建与物理现实高度对应的数学模型。然而,这种优势也带来了其天然的局限性:基于时间的驱动核心(Time-BasedCoreEngine):Simulink的“心脏”是一个时间驱动的仿
- 【前端工程化】前端组件模版构建那些事
前端
在企业级后台系统中,组件是构建页面的基础单元。与C端不同,B端更注重功能完整性、交互一致性与复用效率。因此,我们需要围绕业务场景封装出可复用、易维护、结构清晰的组件模板。本文档主要围绕组件设计原则、分类建议和使用方式展开,适用于Vue或React技术栈下的开发场景。一、组件设计原则职责单一每个组件只负责一个功能或UI元素,不依赖外部状态;示例:按钮组件只处理点击行为,不包含API调用逻辑;高内聚低
- 这是gpt o1给出的物联网工程专业的大学规划,有人看看这个合理吗?
王倚山
gpt物联网学习开发语言
下面是一份更为详细、覆盖全年(包括寒暑假)的四阶段学习规划,旨在帮助你在大学剩余时间里持续学习、循序渐进地掌握物联网(IoT)核心技能,打造深厚的技术壁垒。每个阶段都有明确的学习目标与自学内容细节,并在寒暑假安排了“强化期”任务,让你全年不停歇,不断提升。总体思路稳扎稳打:从嵌入式基础到RTOS、传感器驱动、通信协议,再到边缘计算、云平台、工业协议、安全攻防,层层深入。项目驱动:每个阶段至少完成1
- 大语言模型应用指南:ReAct 框架
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
大语言模型应用指南:ReAct框架关键词:大语言模型,ReAct框架,自然语言处理(NLP),模型融合,多模态学习,深度学习,深度学习框架1.背景介绍1.1问题由来近年来,深度学习技术在自然语言处理(NLP)领域取得了显著进展。尤其是大语言模型(LargeLanguageModels,LLMs),如BERT、GPT系列等,通过在大规模无标签数据上进行预训练,获得了强大的语言理解和生成能力。然而,预
- xml文件笔记
今天学习了一下xml下面是总结的一些笔记Xml可以用来配置文件xml特点:Xml可以从HTYML中分离数据可以利用xml文件在不兼容的系统之间交换数据Xml数据以纯文本格式存储Xml与其他软硬件的耦合度更低,数据可以被更多的设备利用,还可以将XML文件当作数据源来处理,就像操作数据库一样Xml的格式在xml文件头部要有声明在XML中字母的大小写是敏感的Xml文件中有且只有一个根元素,所有的其他元素
- PyTorch 的 torch.nn 模块学习
torch.nn是PyTorch中专门用于构建和训练神经网络的模块。它的整体架构分为几个主要部分,每部分的原理、要点和使用场景如下:1.nn.Module原理和要点:nn.Module是所有神经网络组件的基类。任何神经网络模型都应该继承nn.Module,并实现其forward方法。使用场景:用于定义和管理神经网络模型,包括层、损失函数和自定义的前向传播逻辑。主要API和使用场景:__init__
- 在 Dify 平台中集成上下文工程技术
由数入道
人工智能数据库大数据人工智能软件工程dify
1.提升LLM问答准确率的上下文构建与提示策略大语言模型在开放领域问答中常面临幻觉和知识过时等问题。为提高回答准确率,上下文工程的关键是在提示中注入相关背景知识与指导。具体策略包括:检索增强(RAG):通过从知识库中检索相关内容并将其纳入提示,可以显著提升回答的准确性和可信度。Dify提供了知识检索节点,支持向量数据库存储外部知识,并将检索结果通过上下文变量注入LLM提示中。例如,在知识库问答应用
- Kafka的消费消息是如何传递的?
java1234_小锋
javakafka分布式
大家好,我是锋哥。今天分享关于【Kafka的消费消息是如何传递的?】面试题。希望对大家有帮助;Kafka的消费消息是如何传递的?超硬核AI学习资料,现在永久免费了!在Kafka中,消息的消费传递是通过**消费者(Consumer)和消费者组(ConsumerGroup)**的机制来实现的。以下是Kafka消息消费传递的详细过程:1.Kafka的基本结构Kafka由生产者(Producer)、消费者
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen