- Python MayaVi
stereohomology
学习学习pythonMayaVi
http://www.sam.math.ethz.ch/~raoulb/teaching/PythonTutorial/tips_mayavi2.htmlMayavi2Mayavi2seekstoprovideeasyandinteractivevisualizationof3-Ddata.Itoffers:An(optional)richuserinterfacewithdialogstoint
- Python库 - Mayavi
司南锤
PYTHON库python开发语言
Mayavi是一个用于科学数据可视化的Python库,特别适用于三维数据的可视化。基于VTK(VisualizationToolkit)库,提供了简单易用的接口来创建复杂的三维图形。Mayavi可以用于绘制各种类型的三维图形,如点云、曲面、体积数据等,并且支持交互式操作。文章目录安装Mayavi基本概念基本用法1.创建一个简单的三维图形2.绘制点云3.绘制等值面4.交互式操作高级用法1.使用模块和
- 关于自然语言处理(三)深度学习中的文字序列数据的分词操作
MatrixSparse
大模型人工智能自然语言处理深度学习人工智能
深度学习中的文字序列数据二维文字序列在文字数据中,样本与样本之间的联系是语义的联系,语义的联系即是词与词之间、字与字之间的联系,因此在文字序列中每个样本是一个单词或一个字(对英文来说大部分时候是一个单词,偶尔也可以是更小的语言单位,如字母或半词),故而在中文文字数据中,一张二维表往往是一个句子或一段话,而单个样本则表示单词或字。此时,不能够打乱顺序的维度是vocab_size,它代表了一个句子/一
- 【开源项目】2024最新PHP在线客服系统源码/带预知消息/带搭建教程
于飞SEO
免费资源分享开源php开发语言
简介随着人工智能技术的飞速发展,AI驱动的在线客服系统已经成为企业提升客户服务质量和效率的重要工具。本文将探讨AI在线客服系统的理论基础,并展示如何使用PHP语言实现一个简单的AI客服系统。源码仓库地址:ym.fzapp.top在线客服系统的理论基础AI在线客服系统通过自然语言处理(NLP)、机器学习(ML)和深度学习(DL)技术,能够理解和响应客户的查询。这些系统通常包括以下几个关键组件:自然语
- 基于CNN-BIGRU-Attention模型的功率预测(模型详解及代码复现)
清风AI
深度学习算法详解及代码复现深度学习人工智能算法机器学习计算机视觉cnn神经网络
整体架构基于CNN-BiGRU-Attention模型的功率预测模型是一种融合了卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(Attention)的深度学习架构。这种混合模型旨在充分利用CNN的局部特征提取能力、BiGRU的长序列处理能力以及Attention机制的关键特征突出能力,从而提高功率预测的准确性和可靠性。模型的整体架构主要包括以下几个关键组件:输入层:设计的输入特
- python爬虫系列课程7:ajax
wp_tao
Python副业接单实战项目python爬虫ajax
python爬虫系列课程7:ajax一、ajax的介绍二、ajax的使用一、ajax的介绍ajax是AsynchronousJavaScriptandXML的简写,ajax是一个前后端配合的技术,它可以让JavaScript发送异步的http请求,与后台通信进行数据的获取,ajax最大的优点是实现局部刷新,ajax可以发送http请求,当获取到后台数据的时候更新页面显示数据实现局部刷新,在这里大家
- Python中的常用库
cmgdxrz
python开发语言
一、collectionscollections是Python标准库中的一个模块,提供了一些专门的容器数据类型,能够帮助你更高效地处理常见的数据结构操作。1、CounterCounter是一个字典的子类,用于计数可哈希对象。它会统计对象的出现次数,并能快速获取某个元素出现的次数。特点:它的键是可哈希的元素,值是该元素的计数。可以使用常见的字典操作,也支持一些特定的方法,如.most_common(
- 文生图 图生视频 文生视频人工智能AI工具节选
行思理
AI人工智能文生图文生视频图生视频数字人
1、MidjourneyAI图像和插画生成工具,官网地址:Midjourney中文站,MJ中文站-专业AI绘图网站2、StableDiffusion一种基于扩散技术的深度学习文本转图像模型,演示地址:StabilityAI3、通义万相阿里云通义大模型旗下的AI创意作画与视频生成平台,官网地址:通义万相_AI创意作画_AI绘画_人工智能-阿里云4、PhotoStudioAI模特AI商品图及视频一键生
- ChatGPT-4o引领医学革命:临床科研创新与效率的新纪元
小艳加油
教程语言类人工智能数据分析ChatGPT-4o临床医学
2024年5月12日,更强版本的ChatGPT-4o上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。因此,帮助广大临床医学相关的医院管理人员、医生、学生、科研人员更加熟练地掌握ChatGPT-4o在临床医学日常生活、工作与学习、课题申报、论文选题、实验方案设计、实验数据统计分析与可视化等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理
- “告别 dict.update!Python 3.9+ 字典合并的逆天操作符来了”
HerrFu@灵思智行科技
你不知道的Python那些事儿python开发语言学习
一、为什么你需要抛弃dict.update在Python3.9之前,合并字典的“标准操作”通常是这样的:config={"host":"localhost","port":8080}defaults={"port":80,"debug":False}#传统合并方式merged=defaults.copy()#防止污染原字典merged.update(config)print(merged)#{'p
- python获取windows进程cpu占用率_用Python计算进程cpu使用率
weixin_39736007
经过进一步的研究,我找到了解决办法。在因此,为了获得进程cpu使用率的百分比,我们需要一些参数:1。系统时间为了计算这个,我们需要用户模式时间,内核模式时间和空闲模式时间:fromctypesimport*importtimeclassFILETIME(Structure):_fields_=[("dwLowDateTime",DWORD),("dwHighDateTime",DWORD)]def
- HTML5+CSS3
weixin_34250709
2019独角兽企业重金招聘Python工程师标准>>>第一课HTML5结构HTML5是新一代的HTMLDTD声明改变新的结构标签注意的地方ie8不兼容常用的一些新的结构标签删除的HTML标签纯表现的元素:basefontbigcenterfontsstrikettu对可用性产生负面影响的元素:frameframesetnoframes产生混淆的元素:acronymappletisindexdir重
- android自动化测试 python3.0+appium+uiautomatorviewer+unittest+csv+HTMLTestRunner 登录测试框架
luoyangcoding
app自动化测试app登录自动化脚本
#coding:utf-8importcsv#导入csv库,可以读取csv文件fromappiumimportwebdriverimportunittest#单元测试fromtimeimportsleep#等待时间importtime#时间方法importos#文件、目录方法importsys#引用系统函数fromHTMLTestRunnerimportHTMLTestRunner#定义路径变量,
- 如何通过Python实现股票市场的高频交易策略?如何应对高频交易中的滑点问题?
股票量化
量化投资量化交易程序化交易量化交易python量化炒股券商接口QMT量化投资PTrade
推荐阅读:《【最全攻略】券商交易接口API申请:从数据获取到下单执行》如何通过Python实现股票市场的高频交易策略?如何应对高频交易中的滑点问题?在股票市场中,高频交易(HFT)是一种利用计算机算法快速执行大量交易的策略。这种策略依赖于速度和算法的优化来捕捉微小的价格差异。本文将介绍如何使用Python实现高频交易策略,并探讨如何应对高频交易中的滑点问题。1.理解高频交易高频交易的核心在于速度和
- 人工智能引领技术革命:ChatGPT与深度学习的突破性进展
撒旦骑路西法,大战吕布
国内外安全资讯人工智能
在全球科技快速发展的今天,人工智能(AI)正以前所未有的速度渗透到各个行业,成为推动社会变革的重要力量。特别是在自然语言处理(NLP)领域,OpenAI的ChatGPT凭借深度学习技术的持续突破,展现了AI在理解、推理、对话生成等方面的惊人进步。本文将深入探讨ChatGPT及深度学习的最新突破,以及它对不同行业的深远影响。1.ChatGPT:AI语言模型的革新者1.1什么是ChatGPT?Chat
- 【python】【conda】【Commands 命令5】【conda install】在指定的conda环境中安装一组软件包
资源存储库
windows服务器
目录1condainstall2PositionalArguments位置参数3NamedArguments命名参数4TargetEnvironmentSpecification4目标环境规范编号5ChannelCustomization5渠道定制6SolverModeModifiers6求解器模式修改器7PackageLinkingandInstall-timeOptions7软件包链接和安装时
- 深入探索Deeplearning4j(DL4J):Java深度学习的全面指南
软件职业规划
java深度学习开发语言
一、DL4J框架概述Deeplearning4j(DL4J)是一个开源的深度学习框架,专为Java和Scala设计,运行在Java虚拟机(JVM)上。它由Skymind公司开发并维护,旨在将深度学习技术应用于大规模商业应用。DL4J支持多种深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。自2014年首次发布以来,DL4J已经成为Java深度学习领域的
- 电机的声音数据进行AI分析
鹿屿二向箔
人工智能
对电机的声音数据进行分析,尤其是当数据来源于加速度传感器时,涉及到的不仅仅是声音分析,还包含了振动分析。这类问题通常可以归类于机械故障诊断或预测性维护领域。以下是一些适合处理这种类型数据的人工智能模型和方法:1.特征工程+传统机器学习模型在直接应用深度学习之前,通常首先会进行特征提取。对于振动信号(即使通过加速度传感器采集),常用的方法包括计算频域特征(如傅里叶变换后的频谱)、时域特征(如均方根值
- 李沐深度学习预备知识——数据操作
flex_university
李沐课程学习笔记深度学习人工智能
预备知识——数据操作1、数据操作1.1基本操作importtorchx=torch.arange(12)print(x)print(x.shape)print(x.numel())x=x.reshape(3,4)#变形x=x.reshape(2,-1)#-1代表自动计算torch.zeros((2,3,4))#生成全0张量torch.ones((2,3,4))#生成全1张量torch.randn(
- 基于Pytorch的语音情感识别系统
鱼弦
人工智能时代pytorch人工智能python
基于Pytorch的语音情感识别系统介绍语音情感识别(SpeechEmotionRecognition,SER)是指通过分析和处理人的语音信号来识别其情感状态。常见的情感状态包括愤怒、喜悦、悲伤、惊讶等。基于Pytorch的语音情感识别系统使用深度学习技术,通过训练神经网络模型来实现情感识别任务。应用使用场景客户服务中心:自动识别客户情绪,提供有针对性的服务。智能语音助手:提升人机交互体验,更加智
- Python函数
Gao_xu_sheng
python开发语言
函数概述函数就是Python程序的重要组成单位,一个Python程序可以由很多个函数组成。函数是组织好的,可重复使用的,用来实现单一或相关联功能的代码段,函数能提高应用的模块性,和代码的重复利用率。我们已经知道Python提供了许多内置函数,比如print()。但你也可以自己创建函数,这被叫做用户自定义函数。在本章节我们重点来讲解如何自定义函数,以及如何定义和使用函数。函数定义函数概述函数代码块以
- Python简介
Gao_xu_sheng
python开发语言
Python前言Python一直是一门优秀的编程语言,不仅简洁、易用,而且功能强大,它能做到的事情太多了,既可用于开发桌面应用,也可用于做网络编程,网络爬虫,还有很重要的领域就是AI大模型开发。近年来,随着人工智能(AI)和机器学习(ML)领域的迅猛发展,Python在这些前沿技术中扮演了至关重要的角色,特别是在构建和训练大规模机器学习方面。Python拥有丰富的库和框架,这些工具极大地促进了AI
- Python笔记之多线程与多进程
人间酒中仙
python笔记python笔记
Python笔记之多线程与多进程一、简介二、线程基础(`threading`模块)1、概念说明2、代码示例(1)创建与启动线程(2)使用`threading`模块创建多个线程三、进程基础(`multiprocessing`模块)1、概念说明2、代码示例(1)创建与启动进程(2)创建多个进程四、GIL与线程池1、概念说明2、代码示例(1)GIL影响演示(2)使用线程池管理线程五、小结一、简介本章节详
- Python多进程,多线程和异步实例
汤米先生
Python学习多线程python多进程
文章目录前言一、多进程1.进程间通信使用Queue队列2.多进程中的通信【一个往Queue里写,一个从Queue里读】3.进程池中的通信【只需要就上述的Queue()转换成Manager().Queue()】4.多进程拷贝文件【多个文件的拷贝】二、多线程1.加入互斥锁2.不加入互斥锁3.在屏幕上连续打印10次ABC4.死锁的产生5.针对死锁的处理方法6.生产者消费者模型【常用】—>比如爬虫:爬取数
- 复杂网络;社交网络;社区检测;节点重要性(重要节点识别);舆论动力学模型; 传染病模型 ;蓄意攻击 、随机攻击;网络鲁棒性、脆弱性、稳定性
xiao黄
复杂网络python复杂网络
复杂网络社交网络社区检测节点重要性(重要节点识别)舆论动力学模型传染病模型蓄意攻击随机攻击网络鲁棒性、脆弱性、稳定性Python基本的网络分析详细私聊网络拓扑图连通性网络效率下降
- Python, Java 联合开发全国以及港澳主要商业银行办信用卡实操APP (Siliver)
Geeker-2025
pythonjava
以下是一个使用Python和Java联合开发全国以及港澳主要商业银行办信用卡实操APP的示例架构和部分代码示例。这个APP主要功能包括查询银行信息、了解办信用流程、模拟申请信用卡等操作。###整体架构概述-**Python部分**:-用于数据处理和分析,例如从各种数据源获取银行信息、信用政策等数据,并进行数据清洗和整理。-可以利用数据分析和可视化库来辅助生成信用评估报告和相关图表。-**Java部
- 新一代 AI 软件Manus 将重新将AI市场大洗牌
CircuitWizard
人工智能
Manus是一家专注于手部追踪、虚拟现实(VR)和增强现实(AR)技术的公司,其新一代AI软件结合了先进的机器学习和计算机视觉技术,致力于提升人机交互的自然性和效率。以下是关于Manus新一代AI软件的详细介绍及其核心功能:1.核心技术与创新Manus的AI软件基于以下技术突破:高精度手部追踪:通过深度学习算法和摄像头/传感器数据,实时捕捉手部骨骼、关节和肌肉的细微动作,精度可达亚毫米级,支持复杂
- Python数据可视化——Matplotlib的基本绘图:图形、轴、标签
大数据张老师
python信息可视化matplotlib
Matplotlib的绘图系统是由多个层次组成的,它的基本结构包括图形(Figure)、坐标轴(Axes)、刻度(Ticks)、标签(Labels)等多个部分。理解这些基本组件,有助于更好地使用Matplotlib绘制和优化图表。在本节中,我们将结合NumPy数组,详细讲解Matplotlib的基本结构,并展示它们在实际项目中的应用。图形(Figure):整个绘图的容器在Matplotlib中,图
- 【自然语言处理-NLP】情感分析与主题建模
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习自然语言处理人工智能情感分析主题建模深度学习机器学习NLP
以下内容详细剖析了NLP中情感分析(SentimentAnalysis)和主题建模(TopicModeling)的技术与方法,分别展示如何从文本中提取情感倾向和潜在主题,并提供示例代码和讲解,可在Python环境下直接运行。目录情感分析(SentimentAnalysis)1.1概念与方法概览1.2传统机器学习方法1.3深度学习与预训练模型1.4代码示例:基于机器学习的情感分类主题建模(Topic
- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite