目录
一、数据立方体
二、数据模型
(一)星形模型
(二)雪花模式
(三)事实星座模式
三、多维数据模型中的OLAP操作
(一)下钻
(二)上卷
(三)切片
(四)切块
(五)转轴
数据仓库和OLAP工具是基于多维数据模型的,该模型以数据立方体(Cube)的形式来观察和分析数据。
区别于关系数据模型中的二维表,数据立方体是一个多维的数据模型,类似于一个超立方体。它允许从多个维度来对数据建模,并提供多维的视角以观察数据。
数据立方体由维和事实定义。一般来说,维是透视图或是一个组织想要记录的实体。在通常情况下,多维数据模型会围绕某个主题来构建,该中心主题被称为事实,事实是用数值来度量的。
一个分店的销售数据表,如表所示,分店的销售按照时间维(按季度组织)和商品维(按所售商品的类型组织)表示:
XX武汉分店 |
||
---|---|---|
时间(季度) |
商品(类型)(单位:台) |
|
笔记本 |
台式机 |
|
Q1 |
408 |
887 |
Q2 |
496 |
945 |
Q3 |
522 |
768 |
Q4 |
6000 |
1023 |
下面从三维角度观察销售数据,如表所示,添加一个分店地址维,从时间、商品类型和分店地址来观察数据。
时间(季度) |
XX武汉分店 |
XX宜昌分店 |
XX北京分店 |
XX郑州分店 |
||||
商品(类型)(单位:台) |
||||||||
笔记本 |
台式机 |
笔记本 |
台式机 |
笔记本 |
台式机 |
笔记本 |
台式机 |
|
Q1 |
408 |
887 |
609 |
1089 |
812 |
1280 |
321 |
654 |
Q2 |
496 |
945 |
688 |
1671 |
1092 |
843 |
431 |
892 |
Q3 |
522 |
768 |
789 |
1230 |
533 |
657 |
450 |
900 |
Q4 |
600 |
1023 |
806 |
1800 |
1288 |
438 |
560 |
732 |
概念上讲,这些数据也能够以三维数据立方体的形式来表示。如果需要四维的数据,可以在上表的基础上再多添加一个供应商维度。虽然不能直观地去想象,但是可以把四维的数据看作是三维数据的序列。例如,供应商1对应一个三维数据立方体,供应商2对应个三维数据立方体……以此类推,就可以把任意n维数据立方体看作是n-1维数据立方体的序列。
需要注意的是,数据立方体只是对多维数据存储的一种抽象,数据的实际物理存储方式并不等同于它的逻辑表示。
在数据库设计中,通常使用的是实体—联系数据模型,数据的组织由实体的集合和他们之间的联系组成,这种数据模型适用于联机事务处理。然而,对于数据仓库的联机数据分析,则需要使用简明、面向主题的数据模型。目前最流行的数据仓库数据模型是多维数据模型。这种模型常用的模式有三种,分别是星形模式、雪花模式、事实星座模式。
对于这三种模式的定义,将用到一种基于SQL的数据挖掘查询语言(Data Mining Query Language , DMQL)。DMQL包括定义数据仓库的语言原语。数据仓库可以使用两种原语进行定义,一种是立方体定义,一种是维定义。
立方体定义语句具有如下语法形式:
define cube
维定义语句具有如下语法形式:
define dimension
星形模式是最常见的模型范例,其包括:
(1)一个大的、包含大批数据、不含冗余的中心表(事实表);
(2)一组小的附属维表。
这种模式图很像是星星,如图所示,维表围绕中心表显示在中心表的射线上。在这个图中,一个销售事实表Sales共有四个维,分别为 time维、branch维、item维和 location维。该模式包含一个中心事实表Sales,它包含四个维的关键字和三个度量 units_sold、dollars_sold 和 avg_sales。
在星形模式中,每个维只用一个维表来表示,每个表各包含一组属性。例如,item 维表包含属性集 {item_key,item_name,brand,type,supplier_type},这一限制可能会造成某些冗余。例如,某些商品属于同一个商标,或者来自于同一个供应商。
图中的星形模式使用DMQL定义如下:
define cube sales_star [time,item,branch,location]:
dollars_sold = sum(sales_in_dollars), units_sold = count(*), avg_sales = avg(sales_in_dollars)
define dimension time as (time_key, day, day_of_the_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, state_or_province, country)
define cube定义了一个数据立方体——sales _star,它对应于图中的中心表 Sales 事实表。该命令说明维表的关键字和三个度量:units_sold、dollars_sold 和 avg_sales。数据立方体有四个维,分别为 time、item、branch 和 location,其中每一个 define dimension 语句分别定义一个维。
雪花模式是对星形模式的扩展,如图所示。在雪花模式中,某些维表被规范化,进一步分解到附加表(维表)中。从而使得模式图形变成类似于雪花的形状。从图中可以看到,location 表被进一步细分出 city 维,item 表被进一步细分出 supplier 维。
图中的雪花模式可以使用DMQL定义如下:
define cube sales_snowflake [time,item,branch,location]:
dollars_sold = sum(sales_in_dollars), units_sold = count (*), avg_sales = avg (sales_in_dollars)
define dimension time as (time_key, day, day _of _the week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier(supplier_key, supplier_type))
define dimension branch as (branch_key, branch _name, branch_type)
define dimension location as(lacation _key, street, city(city_key, state_or_province, country))
该定义类似于星形模式中的定义,不同的是雪花模式对维表 item 和 location 的定义更加规范。在 sales_snowflake 数据立方体中,sales_star 数据立方体的 item 维被规范化成两个维表: item 和 supplier。注意 supplier 维的定义在 item 的定义中被说明,用这种方式定义 supplier,隐式的在 item 的定义中创建了一个 supplier_key。类似的,在 sales_snowflake 数据立方体中,sales_star 数据立方体的 location 维被规范化成两个维表 location 和 city,city 的维定义在 location 的定义中被说明,city_key 在 location 的定义中隐式地创建。
在复杂的应用场景下,一个数据仓库可能会由多个主题构成,因此会包含多个事实表,而同一个维表可以被多个事实表所共享,这种模式可以看作是星形模式的汇集,因而被称为事实星座模式。
如图所示,图中包含两张事实表,分别是 Sales 表和 Shipping 表,Sales 表的定义与星形模式中的相同。Shipping 表有五个维或关键字:time_key,item_key,shipper_key,from_location,to_ location。两个度量:dollars_cost 和 units_shipped。在事实星座模式中,事实表是能够共享维表的,例如,Sales 表和 Shiping 表共享 time、 item 和 location 三个维表。
图中的事实星座模式可以使用DMQL定义如下:
define cube sales [time,item, branch,location]:
dollars_sold = sum(sales in dollars), units_sold = count (*), avg_sales = avg(sales_in_dollars)
define dimension time as (time_key, day, day_of _the_Week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, state_or_province, country)
define cube shipping [time, item, shipper, from_location, to_location]:
dollars _cost = sum(cost_in _dollars), units _shipped = count(*)
define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as(shipper_key, shipper_name, location as location in cube sales, shipper_type)
define dimension from_location as location in cube sales
define dimension to_location as location in cube sales
define cube 语句用于定义数据立方体 sales 和 shipping,分别对应图中的两个事实表。注意数据立方体 sales 的 time, item 和 location 维分别可以被数据立方体 shipping 共享,由于这三个维表已经在 sales 中被定义,在定义 shipping 时可以直接通过 “as” 关键字进行引用。
在学习多维数据模型中的OLAP操作之前,首先需要认识一下概念分层。
概念分层提出的背景是因为由数据归纳出的概念是有层次的。例如,假定在一个location维表中,location是“华中科技大学”,可以通过常识归纳出 “武汉市” “湖北省” “中国” “亚洲” 等不同层次的更高级概念,这些不同层次的概念是对原始数据在不同粒度上的概念抽象。所谓概念分层,实际上就是将低层概念集映射到高层概念集的方法。
许多概念分层隐藏在数据库模式中。例如,假定 location 维由属性 number、street、city、province、country 定义。这些属性按一个全序相关,形成一个层次,如 “city
概念分层也可以通过对维或属性值的离散化或分组来定义,产生集合分组分层。例如,可以将商品的价格从高到低区间排列,这样的概念分层就是集合分组分层。对于商品价格这一维,根据不同的用户视图,可能有多个概念分层,用户可能会更加简单地把商品看作便宜、价格适中、昂贵这样的分组来组织概念分层。
概念分层允许用户在各种抽象级别处理多维数据模型,有一些OLAP数据立方体操作允许用户将抽象层物化成为不同的视图,并能够交互查询和分析数据。由此可见,OLAP为数据分析提供了友好的交互环境。
典型的OLAP的多维分析操作包括:下钻(Drill-down)上卷(Roll-up)切片(Slice)切块(Dice)以及转轴(Pivot)等。下面将以表“四个分店的销售数据表”的数据为例分别对这些操作进行详细介绍。
下钻(Drill-down)是指在维的不同层次间的变化,从上层降到下一层,或者说是将汇总数据拆分成更加细节的数据。如图所示,下钻操作从时间这一维度对数据立方体进行更深一步的细分,从季度下钻到月份,从而能够针对每个月份的数据进行进一步更加细化的分析。
上卷(Roll-up)实际上就是下钻的逆操作,即从细粒度数据向高层的聚合。如图所示,上卷操作也是从时间这一维度对数据立方体进行操作的,将第一季度和第二李度的数据合开为上半年的数据,将第三季度和第四季度的数据合并为下半年的数据,从而将数据聚合,使得在史高层次上讲行数据分析成为可能。
切片(Slice)是指选择维中特定区间的数据或者某批特定值进行分析。如图所示,对于商品类型这一维度添加限制条件,只针对台式机这个商品类型进行切片操作,就可以单独分析关于台式机的所有四个分店在各个季度的所有数据。
切块(Dice)操作通过在两个或多个维上进行选择,定义子数据立方体。如图所示,展示了一个切块操作,它涉及三个维,并通过指定商品类型、时间和分店这三个限制各件对据立方体进行切块。
转轴(Pivot)即维的位置的互换,就像是二维表的行列转换。转轴操作只是转动数据的视角,提供数据的替代表示。如图所示,展示了一个转轴操作,转轴实际上只是将时间和分店这两个维在二维平面上进行转动。转轴的其他例子包括转动三维数据方体,或将一个三维立方体变换成二维的平面序列等。