今天我们要学习一款爬虫框架的使用就是WebMagic。其底层用到了我们上一天课程所使用的HttpClient和Jsoup,让我们能够更方便的开发爬虫。
WebMagic项目代码分为核心和扩展两部分。核心部分(webmagic-core)是一个精简的、模块化的爬虫实现,而扩展部分则包括一些便利的、实用性的功能。
WebMagic的设计目标是尽量的模块化,并体现爬虫的功能特点。这部分提供非常简单、灵活的API,在基本不改变开发模式的情况下,编写一个爬虫。
扩展部分(webmagic-extension)提供一些便捷的功能,例如注解模式编写爬虫等。同时内置了一些常用的组件,便于爬虫开发。
WebMagic的结构分为Downloader、PageProcessor、Scheduler、Pipeline四大组件,并由Spider将它们彼此组织起来。这四大组件对应爬虫生命周期中的下载、处理、管理和持久化等功能。WebMagic的设计参考了Scapy,但是实现方式更Java化一些。
而Spider则将这几个组件组织起来,让它们可以互相交互,流程化的执行,可以认为Spider是一个大的容器,它也是WebMagic逻辑的核心。
WebMagic总体架构图如下:
1.Downloader
Downloader负责从互联网上下载页面,以便后续处理。WebMagic默认使用了Apache HttpClient作为下载工具。
2.PageProcessor
PageProcessor负责解析页面,抽取有用信息,以及发现新的链接。WebMagic使用Jsoup作为HTML解析工具,并基于其开发了解析XPath的工具Xsoup。
在这四个组件中,PageProcessor对于每个站点每个页面都不一样,是需要使用者定制的部分。
3.Scheduler
Scheduler负责管理待抓取的URL,以及一些去重的工作。WebMagic默认提供了JDK的内存队列来管理URL,并用集合来进行去重。也支持使用Redis进行分布式管理。
4.Pipeline
Pipeline负责抽取结果的处理,包括计算、持久化到文件、数据库等。WebMagic默认提供了“输出到控制台”和“保存到文件”两种结果处理方案。
Pipeline定义了结果保存的方式,如果你要保存到指定数据库,则需要编写对应的Pipeline。对于一类需求一般只需编写一个Pipeline。
1.打开IDEA如图所示的界面,点击Create New Project。
2.选择Maven和JDK版本,点击Next。如图所示:
3.填写项目相关内容,点击Finish。如图所示:
4.pom.xml的代码如下:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.txw</groupId>
<artifactId>crawler-webmagic</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<!--WebMagic-->
<dependency>
<groupId>us.codecraft</groupId>
<artifactId>webmagic-core</artifactId>
<version>0.7.3</version>
</dependency>
<dependency>
<groupId>us.codecraft</groupId>
<artifactId>webmagic-extension</artifactId>
<version>0.7.3</version>
</dependency>
</dependencies>
</project>
如图所示:
注意:0.7.3版本对SSL的并不完全,如果是直接从Maven中央仓库下载依赖,在爬取只支持SSL v1.2的网站会有SSL的异常抛出。
解决方案:
1.等作者的0.7.4的版本发布
2.直接从github上下载最新的代码,安装到本地仓库
也可以参考以下资料自己修复
https://github.com/code4craft/webmagic/issues/701
5.WebMagic使用slf4j-log4j12作为slf4j的实现。
添加log4j.properties配置文件的代码如下:
log4j.rootLogger=INFO,A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%c]-[%p] %m%n
package com.txw.test;
import us.codecraft.webmagic.Page;
import us.codecraft.webmagic.Site;
import us.codecraft.webmagic.Spider;
import us.codecraft.webmagic.processor.PageProcessor;
/**
* 案例实现
* @author Adair
* @date 2022/3/17 上午 9:25
* @email [email protected]
*/
@SuppressWarnings("all") // 注解警告信息
public class JobProcessor implements PageProcessor {
private Site site = Site.me();
/**
* 解析页面
* @param page
*/
@Override
public void process(Page page) {
// 解析返回数据page,并且把解析的结果放到ResultItems中
page.putField("author", page.getHtml().css("div.mt>h1").all());
}
@Override
public Site getSite() {
return site;
}
/**
* 主函数执行爬虫
* @param args
*/
public static void main(String[] args) {
Spider.create(new JobProcessor())
// 初始访问url地址
.addUrl("https://www.jd.com/moreSubject.aspx")
// 执行爬虫
.run();
}
}
WebMagic里主要使用了三种抽取技术:XPath、正则表达式和CSS选择器。另外,对于JSON格式的内容,可使用JsonPath进行解析。
1.XPath
以上是获取属性class=mt的div标签,里面的h1标签的内容
page.getHtml().xpath("//div[@class=mt]/h1/text()")
也可以参考课堂资料的W3School离线手册(2017.03.11版).chm。
2.CSS选择器
CSS选择器是与XPath类似的语言。在上一次的课程中,我们已经学习过了Jsoup的选择器,它比XPath写起来要简单一些,但是如果写复杂一点的抽取规则,就相对要麻烦一点。
div.mt>h1表示class为mt的div标签下的直接子元素h1标签
page.getHtml().css("div.mt>h1").toString()
可是使用:nth-child(n)选择第几个元素,如下选择第一个元素
page.getHtml().css("div#news_div > ul > li:nth-child(1) a").toString()
注意:需要使用>,就是直接子元素才可以选择第几个元素。
3.正则表达式
正则表达式则是一种通用的文本抽取语言。在这里一般用于获取url地址。
正则表达式学习难度要大一些,大家可以参考课堂资料《正则表达式系统教程.CHM》
Selectable相关的抽取元素链式API是WebMagic的一个核心功能。使用Selectable接口,可以直接完成页面元素的链式抽取,也无需去关心抽取的细节。
在刚才的例子中可以看到,page.getHtml()返回的是一个Html对象,它实现了Selectable接口。这个接口包含的方法分为两类:抽取部分和获取结果部分。
这部分抽取API返回的都是一个Selectable接口,意思是说,是支持链式调用的。例如访问https://www.jd.com/moreSubject.aspx页面
// 先获取class为news_div的div
// 再获取里面的所有包含文明的元素
List<String> list = page.getHtml()
.css("div#news_div")
.regex(".*文明.*").all();
当链式调用结束时,我们一般都想要拿到一个字符串类型的结果。这时候就需要用到获取结果的API了。
我们知道,一条抽取规则,无论是XPath、CSS选择器或者正则表达式,总有可能抽取到多条元素。WebMagic对这些进行了统一,可以通过不同的API获取到一个或者多个元素。
当有多条数据的时候,使用get()和toString()都是获取第一个url地址。代码如下:
String str = page.getHtml()
.css("div#news_div")
.links().regex(".*[0-3]$").toString();
String get = page.getHtml()
.css("div#news_div")
.links().regex(".*[0-3]$").get();
这里selectable.toString()采用了toString()这个接口,是为了在输出以及和一些框架结合的时候,更加方便。因为一般情况下,我们都只需要选择一个元素!
selectable.all()则会获取到所有元素。
有了处理页面的逻辑,我们的爬虫就接近完工了,但是现在还有一个问题:一个站点的页面是很多的,一开始我们不可能全部列举出来,于是如何发现后续的链接,是一个爬虫不可缺少的一部分。
下面的例子就是获取https://www.jd.com/moreSubject.aspx这个页面中所有符合https://www.jd.com/news.\w+?.*正则表达式的url地址并将这些链接加入到待抓取的队列中去。
演示的代码如下:
public void process(Page page) {
page.addTargetRequests(page.getHtml().links()
.regex("(https://www.jd.com/news.\\w+?.*)").all());
System.out.println(page.getHtml().css("div.mt>h1").all());
}
public static void main(String[] args) {
Spider.create(new JobProcessor())
.addUrl("https://www.jd.com/moreSubject.aspx")
.run();
}
WebMagic用于保存结果的组件叫做Pipeline。我们现在通过“控制台输出结果”这件事也是通过一个内置的Pipeline完成的,它叫做ConsolePipeline。
那么,我现在想要把结果用保存到文件中,怎么做呢?只将Pipeline的实现换成"FilePipeline"就可以了。
演示的代码如下:
/**
* 主函数执行爬虫
* @param args
*/
public static void main(String[] args) {
Spider.create(new JobProcessor())
// 初始访问url地址
.addUrl("https://www.jd.com/moreSubject.aspx")
.addPipeline(new FilePipeline("D:/webmagic/"))
// 设置线程数
.thread(5)
// 执行爬虫
.run();
}
Spider是爬虫启动的入口。在启动爬虫之前,我们需要使用一个PageProcessor创建一个Spider对象,然后使用run()进行启动。
同时Spider的其他组件(Downloader、Scheduler、Pipeline)都可以通过set方法来进行设置。
Site.me()可以对爬虫进行一些配置配置,包括编码、抓取间隔、超时时间、重试次数等。在这里我们先简单设置一下:重试次数为3次,抓取间隔为一秒。
演示的代码如下:
private Site site = Site.me()
// 编码
.setCharset("UTF-8")
// 抓取间隔时间
.setSleepTime(1)
// 超时时间
.setTimeOut(1000 * 10)
// 重试时间
.setRetrySleepTime(3000)
// 重试次数
.setRetryTimes(3);
如图所示:
站点本身的一些配置信息,例如编码、HTTP头、超时时间、重试策略等、代理等,都可以通过设置Site对象来进行配置。
网络爬虫按照系统结构和实现技术,大致可以分为以下几种类型:通用网络爬虫、聚焦网络爬虫、增量式网络爬虫、深层网络爬虫。 实际的网络爬虫系统通常是几种爬虫技术相结合实现的。
通用网络爬虫又称全网爬虫(Scalable Web Crawler),爬行对象从一些种子 URL 扩充到整个 Web,主要为门户站点搜索引擎和大型 Web 服务提供商采集数据。
这类网络爬虫的爬行范围和数量巨大,对于爬行速度和存储空间要求较高,对于爬行页面的顺序要求相对较低,同时由于待刷新的页面太多,通常采用并行工作方式,但需要较长时间才能刷新一次页面。
简单的说就是互联网上抓取所有数据。
聚焦网络爬虫(Focused Crawler),又称主题网络爬虫(Topical Crawler),是指选择性地爬行那些与预先定义好的主题相关页面的网络爬虫。
和通用网络爬虫相比,聚焦爬虫只需要爬行与主题相关的页面,极大地节省了硬件和网络资源,保存的页面也由于数量少而更新快,还可以很好地满足一些特定人群对特定领域信息的需求 。
简单的说就是互联网上只抓取某一种数据。
增量式网络爬虫(Incremental Web Crawler)是 指 对 已 下 载 网 页 采 取 增量式更新和只爬行新产生的或者已经发生变化网页的爬虫,它能够在一定程度上保证所爬行的页面是尽可能新的页面。
和周期性爬行和刷新页面的网络爬虫相比,增量式爬虫只会在需要的时候爬行新产生或发生更新的页面 ,并不重新下载没有发生变化的页面,可有效减少数据下载量,及时更新已爬行的网页,减小时间和空间上的耗费,但是增加了爬行算法的复杂度和实现难度。
简单的说就是互联网上只抓取刚刚更新的数据。
Web 页面按存在方式可以分为表层网页(Surface Web)和深层网页(Deep Web,也称 Invisible Web Pages 或 Hidden Web)。
表层网页是指传统搜索引擎可以索引的页面,以超链接可以到达的静态网页为主构成的 Web 页面。
Deep Web 是那些大部分内容不能通过静态链接获取的、隐藏在搜索表单后的,只有用户提交一些关键词才能获得的 Web 页面。
我们已经学完了WebMagic的基本使用方法,现在准备使用WebMagic实现爬取数据的功能。这里是一个比较完整的实现。
在这里我们实现的是聚焦网络爬虫,只爬取招聘的相关数据。
今天要实现的是爬取https://www.51job.com/上的招聘信息。只爬取“计算机软件”和“互联网电子商务”两个行业的信息。
首先访问页面并搜索两个行业。结果如下:
点击职位详情页,我们分析发现详情页还有一些数据需要抓取:
职位、公司名称、工作地点、薪资、发布时间、职位信息、公司联系方式、公司信息。如图所示:
根据以上信息,设计数据库表的语句如下:
use crawler;
CREATE TABLE `job_info` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键id',
`company_name` varchar(100) DEFAULT NULL COMMENT '公司名称',
`company_addr` varchar(200) DEFAULT NULL COMMENT '公司联系方式',
`company_info` text COMMENT '公司信息',
`job_name` varchar(100) DEFAULT NULL COMMENT '职位名称',
`job_addr` varchar(50) DEFAULT NULL COMMENT '工作地点',
`job_info` text COMMENT '职位信息',
`salary_min` int(10) DEFAULT NULL COMMENT '薪资范围,最小',
`salary_max` int(10) DEFAULT NULL COMMENT '薪资范围,最大',
`url` varchar(150) DEFAULT NULL COMMENT '招聘信息详情页',
`time` varchar(10) DEFAULT NULL COMMENT '职位最近发布时间',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT='招聘信息';
我们需要解析职位列表页,获取职位的详情页,再解析页面获取数据。
获取url地址的流程如下:
但是在这里有个问题:在解析页面的时候,很可能会解析出相同的url地址(例如商品标题和商品图片超链接,而且url一样),如果不进行处理,同样的url会解析处理多次,浪费资源。所以我们需要有一个url去重的功能。
WebMagic提供了Scheduler可以帮助我们解决以上问题。
Scheduler是WebMagic中进行URL管理的组件。一般来说,Scheduler包括两个作用:
1.对待抓取的URL队列进行管理。
2.对已抓取的URL进行去重。
WebMagic内置了几个常用的Scheduler。如果你只是在本地执行规模比较小的爬虫,那么基本无需定制Scheduler,但是了解一下已经提供的几个Scheduler还是有意义的。
去重部分被单独抽象成了一个接口:DuplicateRemover,从而可以为同一个Scheduler选择不同的去重方式,以适应不同的需要,目前提供了两种去重方式。
RedisScheduler是使用Redis的set进行去重,其他的Scheduler默认都使用HashSetDuplicateRemover来进行去重。
如果要使用BloomFilter,必须要加入以下依赖:
<!--WebMagic对布隆过滤器的支持-->
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>16.0</version>
</dependency>
/**
* 主函数执行爬虫
* @param args
*/
public static void main(String[] args) {
Spider.create(new JobProcessor())
// 初始访问url地址
.addUrl("https://www.jd.com/moreSubject.aspx")
.addPipeline(new FilePipeline("D:/webmagic/"))
.setScheduler(new QueueScheduler()
// 参数设置需要对多少条数据去重
.setDuplicateRemover(new BloomFilterDuplicateRemover(10000000)))
// 设置线程数
.thread(1)
// 执行爬虫
.run();
}
如图所示:
修改public void process(Page page)方法,添加一下代码:
/**
* 解析页面
* @param page
*/
@Override
public void process(Page page) {
// 每次加入相同的url,测试去重
page.addTargetRequest("https://www.jd.com/news.html?id=36480");
}
如图所示:
打开布隆过滤器BloomFilterDuplicateRemover,在下图处打断点测试。如图所示:
4.3.2.三种去重方式
去重就有三种实现方式,那有什么不同呢?
1.HashSet
使用java中的HashSet不能重复的特点去重。优点是容易理解。使用方便。
缺点:占用内存大,性能较低。
2.Redis去重
使用Redis的set进行去重。优点是速度快(Redis本身速度就很快),而且去重不会占用爬虫服务器的资源,可以处理更大数据量的数据爬取。
缺点:需要准备Redis服务器,增加开发和使用成本。
3.布隆过滤器(BloomFilter)
使用布隆过滤器也可以实现去重。优点是占用的内存要比使用HashSet要小的多,也适合大量数据的去重操作。
缺点:有误判的可能。没有重复可能会判定重复,但是重复数据一定会判定重复。
布隆过滤器 (Bloom Filter)是由Burton Howard Bloom于1970年提出,它是一种space efficient的概率型数据结构,用于判断一个元素是否在集合中。在垃圾邮件过滤的黑白名单方法、爬虫(Crawler)的网址判重模块中等等经常被用到。
哈希表也能用于判断元素是否在集合中,但是布隆过滤器只需要哈希表的1/8或1/4的空间复杂度就能成同样的问题。布隆过滤器可以插入元素,但不可以删除已有元素。其中的元素越多,误报率越大,但是漏报是不可能的。
原理:
布隆过滤器需要的是一个位数组(和位图类似)和K个映射函数(和Hash表类似),在初始状态时,对于长度为m的位数组array,它的所有位被置0。
对于有n个元素的集合S={S1,S2…Sn},通过k个映射函数{f1,f2,…fk},将集合S中的每个元素Sj(1<=j<=n)映射为K个值{g1,g2…gk},然后再将位数组array中相对应的array[g1],array[g2]…array[gk]置为1:
如果要查找某个元素item是否在S中,则通过映射函数{f1,f2,…fk}得到k个值{g1,g2…gk},然后再判断array[g1],array[g2]…array[gk]是否都为1,若全为1,则item在S中,否则item不在S中。
布隆过滤器会造成一定的误判,因为集合中的若干个元素通过映射之后得到的数值恰巧包括g1,g2,…gk,在这种情况下可能会造成误判,但是概率很小。
以下是一个布隆过滤器的实现,可以参考如下:
// 布隆过滤器
public class BloomFilter {
/* BitSet初始分配2^24个bit */
private static final int DEFAULT_SIZE = 1 << 24;
/* 不同哈希函数的种子,一般应取质数 */
private static final int[] seeds = new int[] { 5, 7, 11, 13, 31, 37 };
private BitSet bits = new BitSet(DEFAULT_SIZE);
/* 哈希函数对象 */
private SimpleHash[] func = new SimpleHash[seeds.length];
public BloomFilter() {
for (int i = 0; i < seeds.length; i++) {
func[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
}
// 将url标记到bits中
public void add(String str) {
for (SimpleHash f : func) {
bits.set(f.hash(str), true);
}
}
// 判断是否已经被bits标记
public boolean contains(String str) {
if (StringUtils.isBlank(str)) {
return false;
}
boolean ret = true;
for (SimpleHash f : func) {
ret = ret && bits.get(f.hash(str));
}
return ret;
}
/* 哈希函数类 */
public static class SimpleHash {
private int cap;
private int seed;
public SimpleHash(int cap, int seed) {
this.cap = cap;
this.seed = seed;
}
// hash函数,采用简单的加权和hash
public int hash(String value) {
int result = 0;
int len = value.length();
for (int i = 0; i < len; i++) {
result = seed * result + value.charAt(i);
}
return (cap - 1) & result;
}
}
}
1.pom.xml的代码如下:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.2.RELEASE</version>
</parent>
<groupId>com.txw</groupId>
<artifactId>crawler-webmagic</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<!--SpringMVC-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--SpringData Jpa-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<!--MySQL连接包-->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
</dependency>
<!--WebMagic核心包-->
<dependency>
<groupId>us.codecraft</groupId>
<artifactId>webmagic-core</artifactId>
<version>0.7.3</version>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<!--WebMagic扩展-->
<dependency>
<groupId>us.codecraft</groupId>
<artifactId>webmagic-extension</artifactId>
<version>0.7.3</version>
</dependency>
<!--WebMagic对布隆过滤器的支持-->
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>16.0</version>
</dependency>
<!--工具包-->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
</dependency>
</dependencies>
</project>
如图所示:
2.添加application.properties配置文件的代码如下:
#数据库配置
spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://192.168.56.10:3306/crawler?characterEncoding=utf-8&useSSL=false
spring.datasource.username=root
spring.datasource.password=123456
#JPA配置
spring.jpa.database=MySQL
spring.jpa.show-sql=true
spring.jpa.open-in-view=false
演示的代码如下:
package com.txw.pojo;
import javax.persistence.*;
import javax.persistence.GenerationType;
/**
* 工作信息 {@link JobInfo}
* @author Adair
* @date 2022/3/17 上午 11:02
* @email [email protected]
*/
@SuppressWarnings("all") // 注解警告信息
@Entity
public class JobInfo {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String companyName;
private String companyAddr;
private String companyInfo;
private String jobName;
private String jobAddr;
private String jobInfo;
private Integer salaryMin;
private Integer salaryMax;
private String url;
private String time;
public Long getId() {
return id;
}
public void setId(Long id) {
this.id = id;
}
public String getCompanyName() {
return companyName;
}
public void setCompanyName(String companyName) {
this.companyName = companyName;
}
public String getCompanyAddr() {
return companyAddr;
}
public void setCompanyAddr(String companyAddr) {
this.companyAddr = companyAddr;
}
public String getCompanyInfo() {
return companyInfo;
}
public void setCompanyInfo(String companyInfo) {
this.companyInfo = companyInfo;
}
public String getJobName() {
return jobName;
}
public void setJobName(String jobName) {
this.jobName = jobName;
}
public String getJobAddr() {
return jobAddr;
}
public void setJobAddr(String jobAddr) {
this.jobAddr = jobAddr;
}
public String getJobInfo() {
return jobInfo;
}
public void setJobInfo(String jobInfo) {
this.jobInfo = jobInfo;
}
public Integer getSalaryMin() {
return salaryMin;
}
public void setSalaryMin(Integer salaryMin) {
this.salaryMin = salaryMin;
}
public Integer getSalaryMax() {
return salaryMax;
}
public void setSalaryMax(Integer salaryMax) {
this.salaryMax = salaryMax;
}
public String getUrl() {
return url;
}
public void setUrl(String url) {
this.url = url;
}
public String getTime() {
return time;
}
public void setTime(String time) {
this.time = time;
}
@Override
public String toString() {
return "JobInfo{" +
"id=" + id +
", companyName='" + companyName + '\'' +
", companyAddr='" + companyAddr + '\'' +
", companyInfo='" + companyInfo + '\'' +
", jobName='" + jobName + '\'' +
", jobAddr='" + jobAddr + '\'' +
", jobInfo='" + jobInfo + '\'' +
", salaryMin=" + salaryMin +
", salaryMax=" + salaryMax +
", url='" + url + '\'' +
", time='" + time + '\'' +
'}';
}
}
演示的代码如下:
package com.txw.dao;
import com.txw.pojo.JobInfo;
import org.springframework.data.jpa.repository.JpaRepository;
/**
* 工作信息持久层接口
* @author Adair
* @date 2022/3/17 上午 11:10
* @email [email protected]
*/
@SuppressWarnings("all") // 注解警告信息
public interface JobInfoDao extends JpaRepository<JobInfo,Long> {
}
1.演示的代码如下:
package com.txw.service;
import com.txw.pojo.JobInfo;
import java.util.List;
/**
* 工作信息业务层接口
* @author Adair
* @date 2022/3/17 0017上午 11:12
* @email [email protected]
*/
@SuppressWarnings("all") // 注解警告信息
public interface JobInfoService {
/**
* 保存工作信息
* @param jobInfo
*/
public void save(JobInfo jobInfo);
/**
* 根据条件查询工作信息
* @param jobInfo
* @return
*/
public List<JobInfo> findJobInfo(JobInfo jobInfo);
}
package com.txw.service.impl;
import com.txw.dao.JobInfoDao;
import com.txw.pojo.JobInfo;
import com.txw.service.JobInfoService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Example;
import org.springframework.stereotype.Service;
import javax.transaction.Transactional;
import java.util.List;
/**
* 工作信息业务层实现类 {@link JobInfoServiceImpl}
* @author Adair
* @date 2022/3/17 上午 11:20
* @email [email protected]
*/
@Service
@SuppressWarnings("all") // 注解警告信息
public class JobInfoServiceImpl implements JobInfoService {
@Autowired
private JobInfoDao jobInfoDao;
/**
* 保存工作信息
* @param jobInfo
*/
@Override
@Transactional
public void save(JobInfo jobInfo){
// 先从数据库查询数据,根据发布日期查询和url查询
JobInfo param = new JobInfo();
param.setUrl(jobInfo.getUrl());
param.setTime(jobInfo.getTime());
// 执行查询
List<JobInfo> list = this.findJobInfo(param);
if (list.size() == 0) {
// 没有查询到数据则新增或者修改数据
this.jobInfoDao.saveAndFlush(jobInfo);
}
}
/**
* 根据条件查询工作信息
* @param jobInfo
* @return
*/
@Override
public List<JobInfo> findJobInfo(JobInfo jobInfo){
// 设置查询条件
Example example = Example.of(jobInfo);
// 执行查询
List<JobInfo> list = this.jobInfoDao.findAll(example);
return list;
}
}
演示的代码如下:
package com.txw;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.scheduling.annotation.EnableScheduling;
/**
* 主启动类
* @author Adair
* @date 2022/3/17 上午 11:28
* @email [email protected]
*/
@SuppressWarnings("all") // 注解警告信息
@SpringBootApplication
@EnableScheduling // 开启定时任务
public class CrawlerWebmagicApplication {
public static void main(String[] args) {
SpringApplication.run(CrawlerWebmagicApplication.class,args);
}
}
演示的代码如下:
package com.txw.task;
import com.txw.pojo.JobInfo;
import com.txw.utils.MathSalary;
import org.apache.commons.lang3.StringUtils;
import org.jsoup.Jsoup;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;
import us.codecraft.webmagic.Page;
import us.codecraft.webmagic.Site;
import us.codecraft.webmagic.Spider;
import us.codecraft.webmagic.processor.PageProcessor;
import us.codecraft.webmagic.scheduler.BloomFilterDuplicateRemover;
import us.codecraft.webmagic.scheduler.QueueScheduler;
import us.codecraft.webmagic.selector.Html;
import us.codecraft.webmagic.selector.Selectable;
import java.util.List;
/**
* 工作信息定时任务 {@link JobProcessor}
* @author Adair
* @date 2022/3/17 下午 12:34
* @email [email protected]
*/
@SuppressWarnings("all") // 注解警告信息
@Component
public class JobProcessor implements PageProcessor {
private String url = "https://search.51job.com/list/000000,000000,0000,01%252C32,9,99,java,2,1.html?lang=c&postchannel=0000&workyear=99&cotype=99°reefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare=";
private Site site = Site.me()
// 设置编码
.setCharset("gbk")
// 抓取间隔时间
.setSleepTime(1)
// 设置超时时间
.setTimeOut(1000 * 10)
// 设置重试间隔时间
.setRetrySleepTime(3000)
// 设置重试的次数
.setRetryTimes(3);
/**
* 解析页面
* @param page
*/
@Override
public void process(Page page) {
// 解析页面,获取招聘信息详情的url地址
List<Selectable> list = page.getHtml().css("div.e").nodes();
// 判断获取到的集合是否为空
if (list.size() == 0) {
try {
//如果为空,表示这是招聘信息详情页,保存数据
this.saveJobInfo(page);
} catch (Exception e) {
e.printStackTrace();
}
} else {
// 如果不为空,表示这是招聘信息列表页,解析出详情页的url地址,放到任务队列中
for (Selectable selectable : list) {
// 获取招聘信息详情页url
String jobInfoUrl = selectable.links().toString();
// System.out.println(jobInfoUrl);
// 添加到url任务列表,等待下载
page.addTargetRequest(jobInfoUrl);
// 获取下一页的url
String bkUrl = page.getHtml().css("div.p_in li.bk").nodes().get(1).links().toString();
System.out.println(bkUrl);
// 添加到任务列表中
page.addTargetRequest(bkUrl);
}
}
}
/**
* 解析页面,获取招聘详情信息,保存数据
* @param page
*/
private void saveJobInfo(Page page) {
// 创建招聘详情对象
JobInfo jobInfo = new JobInfo();
// 解析页面
Html html = page.getHtml();
// 获取数据,封装到对象中
// 公司名称a.catn
jobInfo.setCompanyName(html.css("div.cn p.cname a.catn", "text").toString());
// 公司地址
String cAddr = null;
if (cAddr != null) {
cAddr = Jsoup.parse(html.css("div.cn p.ltype", "text").toString()).text().replace("-","");
cAddr = cAddr.substring(0,6);
jobInfo.setCompanyAddr(cAddr);
// 公司信息
jobInfo.setCompanyInfo(html.css("div.tmsg", "text").toString());
// 工作名字
jobInfo.setJobName(html.css("div.cn h1", "text").toString());
// 工作地址
String jobAddr = Jsoup.parse(html.css("div.bmsg").nodes().get(1).toString()).text();
// 部分公司暂没有填写公司详细地址,得非空判断
if (StringUtils.isBlank(jobAddr)){
jobInfo.setJobAddr(jobInfo.getCompanyAddr());
}else {
jobAddr = jobAddr.replace("地图","");
jobInfo.setJobAddr(jobAddr);
}
// 工作信息
jobInfo.setJobInfo(Jsoup.parse(html.css("div.job_msg").toString()).text());
// 个人薪水
Integer[] salary = MathSalary.getSalary(html.css("div.cn strong", "text").toString());
jobInfo.setSalaryMin(salary[0]);
jobInfo.setSalaryMax(salary[1]);
// 发布时间
String time = html.css("div.cn p.msg", "text").toString();
int length = time.lastIndexOf("发布");
jobInfo.setTime(time.substring(length-5, length));
// url地址
jobInfo.setUrl(page.getUrl().toString());
// 把结果保存起来,等待 ResultItem获取 获取
page.putField("jobInfo",jobInfo);
}
}
@Override
public Site getSite() {
return site;
}
// initialDelay当任务启动后,等待多久才执行方法
// fixedDelay每隔多久执行方法
@Scheduled(initialDelay = 1000,fixedDelay = 100 * 1000)
public void process(){
Spider.create(new JobProcessor())
// 初始访问url地址
.addUrl(url)
// 参数设置需要对多少条数据去重
.setScheduler(new QueueScheduler().setDuplicateRemover(new BloomFilterDuplicateRemover(10000000)))
// 设置线程数
.thread(10)
// 执行爬虫
.run();
}
}
演示的代码如下:
package com.txw.utils;
/**
* 工资转换工具类
* @author Adair
* @date 2022/3/17 下午 1:46
* @email [email protected]
*/
@SuppressWarnings("all") // 注解警告信息
public class MathSalary {
/**
* 获取薪水范围
* @param salaryStr
* @return
*/
public static Integer[] getSalary(String salaryStr) {
// 声明存放薪水范围的数组
Integer[] salary = new Integer[2];
// "500/天"
// 0.8-1.2万/月
// 5-8千/月
// 5-6万/年
String date = salaryStr.substring(salaryStr.length() - 1, salaryStr.length());
// 如果是按天,则直接乘以240进行计算
if (!"月".equals(date) && !"年".equals(date)) {
salaryStr = salaryStr.substring(0, salaryStr.length() - 2);
salary[0] = salary[1] = str2Num(salaryStr, 240);
return salary;
}
String unit = salaryStr.substring(salaryStr.length() - 3, salaryStr.length() - 2);
String[] salarys = salaryStr.substring(0, salaryStr.length() - 3).split("-");
salary[0] = mathSalary(date, unit, salarys[0]);
salary[1] = mathSalary(date, unit, salarys[1]);
return salary;
}
// 根据条件计算薪水
private static Integer mathSalary(String date, String unit, String salaryStr) {
Integer salary = 0;
// 判断单位是否是万
if ("万".equals(unit)) {
// 如果是万,薪水乘以10000
salary = str2Num(salaryStr, 10000);
} else {
// 否则乘以1000
salary = str2Num(salaryStr, 1000);
}
// 判断时间是否是月
if ("月".equals(date)) {
// 如果是月,薪水乘以12
salary = str2Num(salary.toString(), 12);
}
return salary;
}
private static int str2Num(String salaryStr, int num) {
try {
// 把字符串转为小数,必须用Number接受,否则会有精度丢失的问题
Number result = Float.parseFloat(salaryStr) * num;
return result.intValue();
} catch (Exception e) {
}
return 0;
}
}
在WebMagic中,Pileline是抽取结束后,进行处理的部分,它主要用于抽取结果的保存,也可以定制Pileline可以实现一些通用的功能。在这里我们会定制Pipeline实现数据导入到数据库中。
5.7.1 Pipeline输出
Pipeline的接口定义如下:
public interface Pipeline {
// ResultItems保存了抽取结果,它是一个Map结构,
// 在page.putField(key,value)中保存的数据,
//可以通过ResultItems.get(key)获取
public void process(ResultItems resultItems, Task task);
}
可以看到,Pipeline其实就是将PageProcessor抽取的结果,继续进行了处理的,其实在Pipeline中完成的功能,你基本上也可以直接在PageProcessor实现,那么为什么会有Pipeline?有几个原因:
1.为了模块分离
“页面抽取”和“后处理、持久化”是爬虫的两个阶段,将其分离开来,一个是代码结构比较清晰,另一个是以后也可能将其处理过程分开,分开在独立的线程以至于不同的机器执行。
2.Pipeline的功能比较固定,更容易做成通用组件
每个页面的抽取方式千变万化,但是后续处理方式则比较固定,例如保存到文件、保存到数据库这种操作,这些对所有页面都是通用的。
在WebMagic里,一个Spider可以有多个Pipeline,使用Spider.addPipeline()即可增加一个Pipeline。这些Pipeline都会得到处理,例如可以使用
spider.addPipeline(new ConsolePipeline()).addPipeline(new FilePipeline())
实现输出结果到控制台,并且保存到文件的目标。
WebMagic中就已经提供了控制台输出、保存到文件、保存为JSON格式的文件几种通用的Pipeline。
自定义SpringDataPipeline
演示的代码如下:
package com.txw.task;
import com.txw.pojo.JobInfo;
import com.txw.service.JobInfoService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import us.codecraft.webmagic.ResultItems;
import us.codecraft.webmagic.Task;
import us.codecraft.webmagic.pipeline.Pipeline;
/**
* 自定义SpringDataPipeline
* @author Adair
* @date 2022/3/17 0017下午 3:05
* @email [email protected]
*/
@Component
@SuppressWarnings("all") // 注解警告信息
public class SpringDataPipeline implements Pipeline {
@Autowired
private JobInfoService jobInfoService;
@Override
public void process(ResultItems resultItems, Task task) {
// 获取封装好的招聘详情对象
JobInfo jobInfo = resultItems.get("jobInfo");
// 判断数据是否不为空
if (jobInfo != null) {
// 如果不为空把数据保存到数据库中
this.jobInfoService.save(jobInfo);
}
}
}
如图所示:
在JobProcessor中修改process()启动的逻辑,添加的代码如下:
package com.txw.task;
import com.txw.pojo.JobInfo;
import com.txw.utils.MathSalary;
import org.apache.commons.lang3.StringUtils;
import org.jsoup.Jsoup;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;
import us.codecraft.webmagic.Page;
import us.codecraft.webmagic.Site;
import us.codecraft.webmagic.Spider;
import us.codecraft.webmagic.processor.PageProcessor;
import us.codecraft.webmagic.scheduler.BloomFilterDuplicateRemover;
import us.codecraft.webmagic.scheduler.QueueScheduler;
import us.codecraft.webmagic.selector.Html;
import us.codecraft.webmagic.selector.Selectable;
import java.util.List;
/**
* 工作信息定时任务 {@link JobProcessor}
* @author Adair
* @date 2022/3/17 下午 12:34
* @email [email protected]
*/
@SuppressWarnings("all") // 注解警告信息
@Component
public class JobProcessor implements PageProcessor {
@Autowired
private SpringDataPipeline springDataPipeline;
private String url = "https://search.51job.com/list/000000,000000,0000,01%252C32,9,99,java,2,1.html?lang=c&postchannel=0000&workyear=99&cotype=99°reefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare=";
private Site site = Site.me()
// 设置编码
.setCharset("gbk")
// 抓取间隔时间
.setSleepTime(1)
// 设置超时时间
.setTimeOut(1000 * 10)
// 设置重试间隔时间
.setRetrySleepTime(3000)
// 设置重试的次数
.setRetryTimes(3);
/**
* 解析页面
* @param page
*/
@Override
public void process(Page page) {
// 解析页面,获取招聘信息详情的url地址
List<Selectable> list = page.getHtml().css("div.e").nodes();
// 判断获取到的集合是否为空
if (list.size() == 0) {
try {
//如果为空,表示这是招聘信息详情页,保存数据
this.saveJobInfo(page);
} catch (Exception e) {
e.printStackTrace();
}
} else {
// 如果不为空,表示这是招聘信息列表页,解析出详情页的url地址,放到任务队列中
for (Selectable selectable : list) {
// 获取招聘信息详情页url
String jobInfoUrl = selectable.links().toString();
// System.out.println(jobInfoUrl);
// 添加到url任务列表,等待下载
page.addTargetRequest(jobInfoUrl);
// 获取下一页的url
String bkUrl = page.getHtml().css("div.p_in li.bk").nodes().get(1).links().toString();
System.out.println(bkUrl);
// 添加到任务列表中
page.addTargetRequest(bkUrl);
}
}
}
/**
* 解析页面,获取招聘详情信息,保存数据
* @param page
*/
private void saveJobInfo(Page page) {
// 创建招聘详情对象
JobInfo jobInfo = new JobInfo();
// 解析页面
Html html = page.getHtml();
// 获取数据,封装到对象中
// 公司名称a.catn
jobInfo.setCompanyName(html.css("div.cn p.cname a.catn", "text").toString());
// 公司地址
String cAddr = null;
if (cAddr != null) {
cAddr = Jsoup.parse(html.css("div.cn p.ltype", "text").toString()).text().replace("-","");
cAddr = cAddr.substring(0,6);
jobInfo.setCompanyAddr(cAddr);
// 公司信息
jobInfo.setCompanyInfo(html.css("div.tmsg", "text").toString());
// 工作名字
jobInfo.setJobName(html.css("div.cn h1", "text").toString());
// 工作地址
String jobAddr = Jsoup.parse(html.css("div.bmsg").nodes().get(1).toString()).text();
// 部分公司暂没有填写公司详细地址,得非空判断
if (StringUtils.isBlank(jobAddr)){
jobInfo.setJobAddr(jobInfo.getCompanyAddr());
}else {
jobAddr = jobAddr.replace("地图","");
jobInfo.setJobAddr(jobAddr);
}
// 工作信息
jobInfo.setJobInfo(Jsoup.parse(html.css("div.job_msg").toString()).text());
// 个人薪水
Integer[] salary = MathSalary.getSalary(html.css("div.cn strong", "text").toString());
jobInfo.setSalaryMin(salary[0]);
jobInfo.setSalaryMax(salary[1]);
// 发布时间
String time = html.css("div.cn p.msg", "text").toString();
int length = time.lastIndexOf("发布");
jobInfo.setTime(time.substring(length-5, length));
// url地址
jobInfo.setUrl(page.getUrl().toString());
// 把结果保存起来,等待 ResultItem获取 获取
page.putField("jobInfo",jobInfo);
}
}
@Override
public Site getSite() {
return site;
}
// initialDelay当任务启动后,等待多久才执行方法
// fixedDelay每隔多久执行方法
@Scheduled(initialDelay = 1000,fixedDelay = 100 * 1000)
public void process(){
Spider.create(new JobProcessor())
// 初始访问url地址
.addUrl(url)
// 参数设置需要对多少条数据去重
.setScheduler(new QueueScheduler().setDuplicateRemover(new BloomFilterDuplicateRemover(10000000)))
// 设置线程数
.thread(10)
.addPipeline(this.springDataPipeline)
// 执行爬虫
.run();
}
}