HashMap 2018-08-06

image.png

Map:接口,定义了map的基本操作

AbstractMap:抽象类,提供了Map的基本实现

/*https://blog.csdn.net/chenXingXu/article/details/79432585*/
/*http://www.cnblogs.com/skywang12345/p/3310835.html*/
/*https://blog.csdn.net/juewang_love/article/details/52674915*/
public class HashMap extends AbstractMap
        implements Map, Cloneable, Serializable {

    /*序列化ID*/
    private static final long serialVersionUID = 362498820763181265L;

    /*默认的初始容量*/
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /*最大容量,如果指定的容量大于这个值,将会使用这个值进行替换,必须是小于2的30次方*/
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /*默认的加载因子*/
    static final float DEFAULT_LOAD_FACTOR = 0.75f;


    /*阀值,当链表的长度大于这个值时,自动转换成红黑树*/
    static final int TREEIFY_THRESHOLD = 8;

    /*当红黑树的大小小于这个值的时候,自动转换成链表*/
    static final int UNTREEIFY_THRESHOLD = 6;

    /*
     https://www.imooc.com/article/24532?block_id=tuijian_wz
     这个字段决定了当hash表的至少大小为多少时,链表才能进行树化。这个设计时合理的,
     因为当hash表的大小很小时,这时候表所需的空间还不多,可以牺牲空间减少时间,
     所以这个情况下 当存储的节点过多时,最好的办法是调整表的大小,使其增大,
     而不是将链表树化。
     **/
    static final int MIN_TREEIFY_CAPACITY = 64;

    /*链表元素的基本节点*/
    static class Node implements Map.Entry {
        final int hash; // 哈希值,HashMap根据该值确定记录的位置
        final K key;
        V value;
        Node next;// 链表下一个节点

        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        /*获取key和value的哈希值取 ^ */
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        /*设置新的值*/
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;//返回旧的值
        }

        /*重写equals方法*/
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry)o;
                /*当key和value都相等时,就相等*/
                if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    /* ---------------- Static utilities -------------- */

    /*https://blog.csdn.net/qazwyc/article/details/76686915*/
    /*使key的hashcode()高16位不变,低16位与高16位异或*/
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /*如果x是一个实现了comparable接口则返回x的class对象,反之返回null*/
    static Class comparableClassFor(Object x) {
        if (x instanceof Comparable) {/*如果实现Comparable接口*/
            Class c; Type[] ts, as; Type t; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    /*判断结果类似于String类型的接口实现*/
                    /*https://blog.csdn.net/qpzkobe/article/details/79533237*/
                    //getRawType()返回一个type类型代表的类或借口,如Collection会返回Collection
                    //getActualTypeArguments 返回一个type[] 如Collection会返回String
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                            ((p = (ParameterizedType)t).getRawType() ==
                                    Comparable.class) &&
                            (as = p.getActualTypeArguments()) != null &&
                            as.length == 1 && as[0] == c) // type arg is c
                        return c;/*返回Collection的E类型*/
                }
            }
        }
        return null;
    }

    /*如果x所属的类是kc,返回k.compareTo(x)的比较结果
    * 如果x为空,或者其所属的类不是kc,返回0*/
    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class kc, Object k, Object x) {
        /*https://www.cnblogs.com/zjfjava/p/5996666.html*/
        /* ||的优先级大于? */
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

    /*返回最近的不小于输入参数的2的整数次幂*/
    /*https://blog.csdn.net/qazwyc/article/details/76686915*/
    static final int tableSizeFor(int cap) {
        /*cap-1再赋值给n的目的是令找到的目标值大于或等于原值。
        如果cap本身是2的幂,如8(1000(2)),不对它减1而直接操作,将得到16*/
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- Fields -------------- */

    // 存储元素的数组,总是2的幂
    transient Node[] table;

    //缓存的entryset()
    transient Set> entrySet;

    /*包含的键值对数*/
    transient int size;

    /*修改次数*/
    transient int modCount;

    /* 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容,默认12*/
    int threshold;

    /*加载因子*/
    final float loadFactor;

    /* ---------------- Public operations -------------- */

    /*构造函数,指定初始容量,指定加载因子*/
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                    initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))/*加载因子必须大于0.0*/
            throw new IllegalArgumentException("Illegal load factor: " +
                    loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    /*构造方法,指定容量*/
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /*默认构造函数*/
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /*构造函数,指定初始化map*/
    public HashMap(Map m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    /*evict是false时,表示初始化*/
    final void putMapEntries(Map m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size/*未初始化*/
                float ft = ((float)s / loadFactor) + 1.0F;/*计算所需容量*/
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                        (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);/*计算table大小,即table的最大容量*/
            }
            else if (s > threshold)
                resize();/*如果table容量不够,就进行扩容*/
            for (Map.Entry e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                /*添加元素*/
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

    /*获取map数*/
    public int size() {
        return size;
    }

    /*判断是否为空*/
    public boolean isEmpty() {
        return size == 0;
    }

   /*获取指定key,对应的value*/
    public V get(Object key) {
        Node e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /*根据hash,key获取对应的Node*/
    final Node getNode(int hash, Object key) {
        Node[] tab; Node first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))/*判断是否是第一个*/
                return first;
            if ((e = first.next) != null) {/*进入链表*/
                if (first instanceof TreeNode)/*如果是红黑树结构*/
                    return ((TreeNode)first).getTreeNode(hash, key);
                do {/*如果是链表结构*/
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    /*判断是否包含指定key*/
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

    /*添加数据*/
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /*用来添加元素*/
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node[] tab; Node p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)/*如果table未初始化*/
            n = (tab = resize()).length;

            /*需判断是否存在Hash冲突:*/
        if ((p = tab[i = (n - 1) & hash]) == null)/*计算table中的位置*/
            tab[i] = newNode(hash, key, value, null);/*若不存在(即当前table[i] == null),则直接在该数组位置新建节点,插入完毕*/
        else {/*代表存在Hash冲突,即当前存储位置已存在节点,则依次往下判断*/
            Node e; K k;
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))/*判断当前位置是否是同一个元素*/
                e = p;
            else if (p instanceof TreeNode)/*是否需要插入tree*/
                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
            else {/*插入链表 */
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        /*表示已到表尾也没有找到key值相同节点,则新建节点 链表尾插入节点*/
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            /*  插入节点后,若链表节点>数阈值,则将链表转换为红黑树*/
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))/*判断当前位置是否是同一个元素*/
                        break;
                    p = e;
                }
            }
            /*发现key已存在,直接用新value 覆盖 旧value & 返回旧value*/
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);/*更新旧的值,没有实现*/
                return oldValue;
            }
        }
        ++modCount;/*更新修改次数*/
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);/*插入新的值,没有实现*/
        return null;
    }

    /*初始化哈希表 ,当前数组容量过小,需扩容*/
    final Node[] resize() {
        Node[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {/*扩容*/
            if (oldCap >= MAXIMUM_CAPACITY) {/*如果容量大于最大容量*/
                threshold = Integer.MAX_VALUE;/*设置为最大的容量*/
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&/*扩容2倍*/
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold /*临界值2倍*/
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            /*如果原来没有保存数据*/
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            /*如果没有初始化*/
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {/*重新设置临界值*/
            float ft = (float)newCap * loadFactor;
            /* && 的优先级大于? */
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node[] newTab = (Node[])new Node[newCap];/*初始化table*/
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {/*把老table保存的数据保存到新创建的table*/
                Node e;
                if ((e = oldTab[j]) != null) {/*遍历table*/
                    oldTab[j] = null;
                    if (e.next == null)/*没有链表,没有红黑树*/
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)/*红黑树*/
                        ((TreeNode)e).split(this, newTab, j, oldCap);
                    else { // preserve order/*链表*/
                        Node loHead = null, loTail = null;
                        Node hiHead = null, hiTail = null;
                        Node next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;/*返回新的table*/
    }

    /*https://blog.csdn.net/Super_Me_Jason/article/details/79729153*/
    /*
    链表长度超过TREEIFY_THRESHOLD(默认为8)时,会调用本方法,
    本方法会判断HashMap的长度,如果小于MIN_TREEIFY_CAPACITY(默认为64),
    则进行扩容,否则将链表转换为TreeNode链,最后调用treeify方法生成红黑树
    */
    final void treeifyBin(Node[] tab, int hash) {
        int n, index; Node e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)/*如果table的length小于64*/
            resize();/*对table扩容*/
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode hd = null, tl = null;
            do {
                TreeNode p = replacementTreeNode(e, null);/*把链表结点转换成树节点*/
                if (tl == null)
                    hd = p;
                else {/*还是搞成链表*/
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);/*将table[index]变成二叉树*/
        }
    }

    /*将m中的元素全部添加*/
    public void putAll(Map m) {
        putMapEntries(m, true);
    }

    /*根据key删除元素*/
    public V remove(Object key) {
        Node e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
    }

    /*删除元素*/
    final Node removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node[] tab; Node p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
            Node node = null, e; K k; V v;
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))/*table中删除*/
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)/*树中删除*/
                    node = ((TreeNode)p).getTreeNode(hash, key);
                else {
                    do {/*链表中删除*/
                        if (e.hash == hash &&
                                ((k = e.key) == key ||
                                        (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                    (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)/*书中删除*/
                    ((TreeNode)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;/*table删除*/
                else
                    p.next = node.next;/*链表中删除*/
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    /*清除map*/
    public void clear() {
        Node[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

   /*判断是否包含value*/
    public boolean containsValue(Object value) {
        Node[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                            (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

    /*获取KeySpliterator,没有重复*/
    public Set keySet() {
        Set ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }

    /*keySet*/
    final class KeySet extends AbstractSet {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer action) {
            Node[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

   /*获取ValueSpliterator,可能会有重复*/
    public Collection values() {
        Collection vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    /*values*/
    final class Values extends AbstractCollection {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer action) {
            Node[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /*获取EntryIterator*/
    public Set> entrySet() {
        Set> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

    /*EntrySet*/
    final class EntrySet extends AbstractSet> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry) o;
            Object key = e.getKey();
            Node candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer> action) {
            Node[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    // Overrides of JDK8 Map extension methods

    /*如果没有就去默认值*/
    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Node e;
        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
    }

    /*如果没有添加*/
    @Override
    public V putIfAbsent(K key, V value) {
        return putVal(hash(key), key, value, true, true);
    }

    /*删除指定的元素*/
    @Override
    public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }

    /*替换指定的value*/
    @Override
    public boolean replace(K key, V oldValue, V newValue) {
        Node e; V v;
        if ((e = getNode(hash(key), key)) != null &&
                ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

    /*替换value*/
    @Override
    public V replace(K key, V value) {
        Node e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

    /*http://developer.51cto.com/art/201404/435216.htm*/
    /*
    * Map接口的实现类如HashMap,ConcurrentHashMap,HashTable等继承了此方法,
    * 通过此方法可以构建JAVA本地缓存,降低程序的计算量,程序的复杂度,使代码简洁,易懂。
    * */
    @Override
    public V computeIfAbsent(K key,
                             Function mappingFunction) {
        if (mappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node[] tab; Node first; int n, i;
        int binCount = 0;
        TreeNode t = null;
        Node old = null;
        if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode)first).getTreeNode(hash, key);
            else {
                Node e = first; K k;
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            V oldValue;
            if (old != null && (oldValue = old.value) != null) {
                afterNodeAccess(old);
                return oldValue;
            }
        }
        V v = mappingFunction.apply(key);
        if (v == null) {
            return null;
        } else if (old != null) {
            old.value = v;
            afterNodeAccess(old);
            return v;
        }
        else if (t != null)
            t.putTreeVal(this, tab, hash, key, v);
        else {
            tab[i] = newNode(hash, key, v, first);
            if (binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab, hash);
        }
        ++modCount;
        ++size;
        afterNodeInsertion(true);
        return v;
    }

    public V computeIfPresent(K key,
                              BiFunction remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        Node e; V oldValue;
        int hash = hash(key);
        if ((e = getNode(hash, key)) != null &&
                (oldValue = e.value) != null) {
            V v = remappingFunction.apply(key, oldValue);
            if (v != null) {
                e.value = v;
                afterNodeAccess(e);
                return v;
            }
            else
                removeNode(hash, key, null, false, true);
        }
        return null;
    }

    @Override
    public V compute(K key,
                     BiFunction remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node[] tab; Node first; int n, i;
        int binCount = 0;
        TreeNode t = null;
        Node old = null;
        if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode)first).getTreeNode(hash, key);
            else {
                Node e = first; K k;
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        V oldValue = (old == null) ? null : old.value;
        V v = remappingFunction.apply(key, oldValue);
        if (old != null) {
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
        }
        else if (v != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return v;
    }

    @Override
    public V merge(K key, V value,
                   BiFunction remappingFunction) {
        if (value == null)
            throw new NullPointerException();
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node[] tab; Node first; int n, i;
        int binCount = 0;
        TreeNode t = null;
        Node old = null;
        if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode)first).getTreeNode(hash, key);
            else {
                Node e = first; K k;
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        if (old != null) {
            V v;
            if (old.value != null)
                v = remappingFunction.apply(old.value, value);
            else
                v = value;
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
            return v;
        }
        if (value != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, value);
            else {
                tab[i] = newNode(hash, key, value, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return value;
    }

    @Override
    public void forEach(BiConsumer action) {
        Node[] tab;
        if (action == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node e = tab[i]; e != null; e = e.next)
                    action.accept(e.key, e.value);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    @Override
    public void replaceAll(BiFunction function) {
        Node[] tab;
        if (function == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node e = tab[i]; e != null; e = e.next) {
                    e.value = function.apply(e.key, e.value);
                }
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    /* ------------------------------------------------------------ */
    // Cloning and serialization


    /*重写clone*/
    /*https://blog.csdn.net/wangbiao007/article/details/52625099*/
    @SuppressWarnings("unchecked")
    @Override
    public Object clone() {
        HashMap result;
        try {
            result = (HashMap)super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

    // These methods are also used when serializing HashSets
    /*负载因子*/
    final float loadFactor() { return loadFactor; }
    /*容量*/
    final int capacity() {
        return (table != null) ? table.length :
                (threshold > 0) ? threshold :
                        DEFAULT_INITIAL_CAPACITY;
    }

    /*重写序列化方法*/
    private void writeObject(java.io.ObjectOutputStream s)
            throws IOException {
        int buckets = capacity();
        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();
        s.writeInt(buckets);
        s.writeInt(size);
        internalWriteEntries(s);
    }

    /*反序列化方法*/
    private void readObject(java.io.ObjectInputStream s)
            throws IOException, ClassNotFoundException {
        // Read in the threshold (ignored), loadfactor, and any hidden stuff
        s.defaultReadObject();
        reinitialize();
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new InvalidObjectException("Illegal load factor: " +
                    loadFactor);
        s.readInt();                // Read and ignore number of buckets
        int mappings = s.readInt(); // Read number of mappings (size)
        if (mappings < 0)
            throw new InvalidObjectException("Illegal mappings count: " +
                    mappings);
        else if (mappings > 0) { // (if zero, use defaults)
            // Size the table using given load factor only if within
            // range of 0.25...4.0
            float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
            float fc = (float)mappings / lf + 1.0f;
            int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                    DEFAULT_INITIAL_CAPACITY :
                    (fc >= MAXIMUM_CAPACITY) ?
                            MAXIMUM_CAPACITY :
                            tableSizeFor((int)fc));
            float ft = (float)cap * lf;
            threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                    (int)ft : Integer.MAX_VALUE);
            @SuppressWarnings({"rawtypes","unchecked"})
            Node[] tab = (Node[])new Node[cap];
            table = tab;

            // Read the keys and values, and put the mappings in the HashMap
            for (int i = 0; i < mappings; i++) {
                @SuppressWarnings("unchecked")
                K key = (K) s.readObject();
                @SuppressWarnings("unchecked")
                V value = (V) s.readObject();
                putVal(hash(key), key, value, false, false);
            }
        }
    }

    /* ------------------------------------------------------------ */
    // iterators

    /*迭代器*/
    abstract class HashIterator {
        Node next;        // next entry to return
        Node current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot

        HashIterator() {
            expectedModCount = modCount;
            Node[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Node nextNode() {
            Node[] t;
            Node e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

        public final void remove() {
            Node p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

    /*key迭代器*/
    final class KeyIterator extends HashIterator
            implements Iterator {
        public final K next() { return nextNode().key; }
    }

    /*value迭代器*/
    final class ValueIterator extends HashIterator
            implements Iterator {
        public final V next() { return nextNode().value; }
    }

    /*entry迭代器*/
    final class EntryIterator extends HashIterator
            implements Iterator> {
        public final Map.Entry next() { return nextNode(); }
    }

    /* ------------------------------------------------------------ */
    // spliterators

    /*分段迭代器*/
    static class HashMapSpliterator {
        final HashMap map;
        Node current;          // current node
        int index;                  // current index, modified on advance/split
        int fence;                  // one past last index
        int est;                    // size estimate
        int expectedModCount;       // for comodification checks

        HashMapSpliterator(HashMap m, int origin,
                           int fence, int est,
                           int expectedModCount) {
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                HashMap m = map;
                est = m.size;
                expectedModCount = m.modCount;
                Node[] tab = m.table;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator
            extends HashMapSpliterator
            implements Spliterator {
        KeySpliterator(HashMap m, int origin, int fence, int est,
                       int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public KeySpliterator trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap m = map;
            Node[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.key);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        K k = current.key;
                        current = current.next;
                        action.accept(k);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator
            extends HashMapSpliterator
            implements Spliterator {
        ValueSpliterator(HashMap m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap m = map;
            Node[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.value);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        V v = current.value;
                        current = current.next;
                        action.accept(v);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
        }
    }

    static final class EntrySpliterator
            extends HashMapSpliterator
            implements Spliterator> {
        EntrySpliterator(HashMap m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap m = map;
            Node[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        Node e = current;
                        current = current.next;
                        action.accept(e);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT;
        }
    }

    /* ------------------------------------------------------------ */
    // LinkedHashMap support


    /*
     * The following package-protected methods are designed to be
     * overridden by LinkedHashMap, but not by any other subclass.
     * Nearly all other internal methods are also package-protected
     * but are declared final, so can be used by LinkedHashMap, view
     * classes, and HashSet.
     */

    // Create a regular (non-tree) node
    /*创建新的Node节点*/
    Node newNode(int hash, K key, V value, Node next) {
        return new Node<>(hash, key, value, next);
    }

    // For conversion from TreeNodes to plain nodes
    Node replacementNode(Node p, Node next) {
        return new Node<>(p.hash, p.key, p.value, next);
    }

    // Create a tree bin node
    /*创建一个TreeNode*/
    TreeNode newTreeNode(int hash, K key, V value, Node next) {
        return new TreeNode<>(hash, key, value, next);
    }

    // For treeifyBin
    TreeNode replacementTreeNode(Node p, Node next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }

    /*重置*/
    void reinitialize() {
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

    // Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess(Node p) { }
    void afterNodeInsertion(boolean evict) { }
    void afterNodeRemoval(Node p) { }

    // Called only from writeObject, to ensure compatible ordering.
    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
        Node[] tab;
        if (size > 0 && (tab = table) != null) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node e = tab[i]; e != null; e = e.next) {
                    s.writeObject(e.key);
                    s.writeObject(e.value);
                }
            }
        }
    }

    /* ------------------------------------------------------------ */
    // Tree bins

    /*二叉树节点*/
    static final class TreeNode extends LinkedHashMap.Entry {
        TreeNode parent;  // red-black tree links
        TreeNode left;
        TreeNode right;
        TreeNode prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node next) {
            super(hash, key, val, next);
        }


        final TreeNode root() {
            for (TreeNode r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /*https://blog.csdn.net/weixin_42340670/article/details/80555860*/
        /*这个方法里做的事情,就是保证树的根节点一定也要成为链表的首节点*/
        static  void moveRootToFront(Node[] tab, TreeNode root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                TreeNode first = (TreeNode)tab[index];
                if (root != first) {/*如果table中的节点,和根节点不同*/
                    Node rn;
                    tab[index] = root;
                    /*树的结构不变,改变链表的结构,TreeNode既是一个红黑树结构,也是一个双链表结构*/
                    TreeNode rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                /*
                 * 这一步是防御性的编程
                 * 校验TreeNode对象是否满足红黑树和双链表的特性
                 * 如果这个方法校验不通过:可能是因为用户编程失误,破坏了结构(例如:并发场景下);
                 * 也可能是TreeNode的实现有问题(这个是理论上的以防万一);
                 */
                assert checkInvariants(root);
            }
        }

        /*查找指定元素*/
        final TreeNode find(int h, Object k, Class kc) {
            TreeNode p = this;
            do {
                int ph, dir; K pk;
                TreeNode pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                        (kc = comparableClassFor(k)) != null) &&
                        (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }


        final TreeNode getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }


        /*
         * 用这个方法来比较两个对象,返回值要么大于0,要么小于0,不会为0
         * 也就是说这一步一定能确定要插入的节点要么是树的左节点,要么是右节点,不然就无法继续满足二叉树结构了
         *
         * 先比较两个对象的类名,类名是字符串对象,就按字符串的比较规则
         * 如果两个对象是同一个类型,那么调用本地方法为两个对象生成hashCode值,再进行比较,hashCode相等的话返回-1
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                    (d = a.getClass().getName().
                            compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                        -1 : 1);
            return d;
        }

        /*实现该对象打头的链表转换为树结构*/
        /*https://blog.csdn.net/weixin_42340670/article/details/80531795*/
        final void treeify(Node[] tab) {
            TreeNode root = null;/*定义树的根节点*/
            for (TreeNode x = this, next; x != null; x = next) {/*遍历链表*/
                        next = (TreeNode)x.next;/*下一个节点*/
                x.left = x.right = null;
                if (root == null) {/*如果是第一个元素,初始化根节点*/
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class kc = null;
                    for (TreeNode p = root;;) {
                        int dir, ph;// dir 标识方向(左右)、ph标识当前树节点的hash值
                        K pk = p.key;
                        if ((ph = p.hash) > h)// 如果当前树节点hash值 大于 当前链表节点的hash值
                            dir = -1;
                        else if (ph < h)// 右侧

                            dir = 1;
                        /*
                          如果两个节点的key的hash值相等,那么还要通过其他方式再进行比较
                          如果当前链表节点的key实现了comparable接口,并且当前树节点和链表节点是相同Class的实例,那么通过comparable的方式再比较两者。
                          如果还是相等,最后再通过tieBreakOrder比较一次
                        */
                        else if ((kc == null &&
                                (kc = comparableClassFor(k)) == null) ||
                                (dir = compareComparables(kc, k, pk)) == 0)/*相等,无法比较*/
                            dir = tieBreakOrder(k, pk);/*确定左右树*/

                        TreeNode xp = p;
                        /*
                         * 如果dir 小于等于0 : 当前链表节点一定放置在当前树节点的左侧,
                         * 但不一定是该树节点的左孩子,也可能是左孩子的右孩子 或者 更深层次的节点。
                         * 如果dir 大于0 : 当前链表节点一定放置在当前树节点的右侧,
                         * 但不一定是该树节点的右孩子,也可能是右孩子的左孩子 或者 更深层次的节点。
                         * 如果当前树节点不是叶子节点,那么最终会以当前树节点的左孩子或者右孩子 为 起始节点
                         * 再从GOTO1 处开始 重新寻找自己(当前链表节点)的位置
                         * 如果当前树节点就是叶子节点,那么根据dir的值,就可以把当前链表节点挂载到当前树节点的左或者右侧了。
                         * 挂载之后,还需要重新把树进行平衡。平衡之后,就可以针对下一个链表节点进行处理了。
                         */
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;/*作为左孩子*/
                            else
                                xp.right = x;/*作为又孩子*/
                            root = balanceInsertion(root, x);/*重新平衡*/
                            break;
                        }
                    }
                }
            }
            // 把所有的链表节点都遍历完之后,最终构造出来的树可能经历多个平衡操作,
            // 根节点目前到底是链表的哪一个节点是不确定的
            // 因为我们要基于树来做查找,所以就应该把 tab[N] 得到的对象一定根节点对象,
            // 而目前只是链表的第一个节点对象,所以要做相应的处理。
            moveRootToFront(tab, root);
        }

        /* 将二叉树转为链表*/
        final Node untreeify(HashMap map) {
            Node hd = null, tl = null;
            for (Node q = this; q != null; q = q.next) {
                Node p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /*树添加元素*/
        final TreeNode putTreeVal(HashMap map, Node[] tab,
                                       int h, K k, V v) {
            Class kc = null;
            boolean searched = false;
            TreeNode root = (parent != null) ? root() : this;
            for (TreeNode p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                        (kc = comparableClassFor(k)) == null) ||
                        (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                                (q = ch.find(h, k, kc)) != null) ||
                                ((ch = p.right) != null &&
                                        (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node xpn = xp.next;
                    TreeNode x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /*树删除元素*/
        final void removeTreeNode(HashMap map, Node[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode first = (TreeNode)tab[index], root = first, rl;
            TreeNode succ = (TreeNode)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                    (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode sr = s.right;
                TreeNode pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                TreeNode pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

        /*判断table的指定位置用链表还是用红黑树*/
        final void split(HashMap map, Node[] tab, int index, int bit) {
            TreeNode b = this;/*tabel的第j个元素*/
            // Relink into lo and hi lists, preserving order
            TreeNode loHead = null, loTail = null;
            TreeNode hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode e = b, next; e != null; e = next) {
                next = (TreeNode)e.next;
                e.next = null;
                /*https://www.zhihu.com/question/20733617*/
                if ((e.hash & bit) == 0) {/*同一个table下标*//*链表名,和技术器不同*/
                    /*换成链表*/
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }
        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR

        static  TreeNode rotateLeft(TreeNode root,
                                              TreeNode p) {
            TreeNode r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        static  TreeNode rotateRight(TreeNode root,
                                               TreeNode p) {
            TreeNode l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        static  TreeNode balanceInsertion(TreeNode root,
                                                    TreeNode x) {
            x.red = true;
            for (TreeNode xp, xpp, xppl, xppr;;) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        static  TreeNode balanceDeletion(TreeNode root,
                                                   TreeNode x) {
            for (TreeNode xp, xpl, xpr;;)  {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (x.red) {
                    x.red = false;
                    return root;
                }
                else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                                (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        }
                        else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                        null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                }
                else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                                (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        }
                        else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                        null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /*检查是否符合红黑树*/
        static  boolean checkInvariants(TreeNode t) {
            TreeNode tp = t.parent, tl = t.left, tr = t.right,
                    tb = t.prev, tn = (TreeNode)t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

}

你可能感兴趣的:(HashMap 2018-08-06)