上篇文章 手把手教你刷二叉树 Ⅰ 连刷了三道二叉树题目,笔者本人直呼内行。其实二叉树相关的算法真的不难,本文再来三道,手把手带你看看树的算法到底怎么做。
labuladong算法小抄
先来复习一下,我们说过写树的算法,关键思路如下:
把题目的要求细化,搞清楚根节点应该做什么,然后剩下的事情抛给前/中/后序的遍历框架就行了,我们千万不要跳进递归的细节里。
也许你还不太理解这句话,我们下面来看例子。
构造最大二叉树
先来道简单的,这是力扣第 654 题,题目如下:
函数签名如下:
TreeNode constructMaximumBinaryTree(int[] nums);
按照我们刚才说的,先明确根节点做什么?对于构造二叉树的问题,根节点要做的就是想办法把自己构造出来。
我们肯定要遍历数组找到最大值 maxVal,把根节点 root 做出来,然后对 maxVal 左边的数组和右边的数组进行递归调用,作为 root 的左右子树。
按照题目给出的例子,输入的数组为 [3,2,1,6,0,5],对于整棵树的根节点来说,其实在做这件事:
TreeNode constructMaximumBinaryTree([3,2,1,6,0,5]) {
// 找到数组中的最大值
TreeNode root = new TreeNode(6);
// 递归调用构造左右子树
root.left = constructMaximumBinaryTree([3,2,1]);
root.right = constructMaximumBinaryTree([0,5]);
return root;
}
再详细一点,就是如下伪码:
TreeNode constructMaximumBinaryTree(int[] nums) {
if (nums is empty) return null;
// 找到数组中的最大值
int maxVal = Integer.MIN_VALUE;
int index = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] > maxVal) {
maxVal = nums[i];
index = i;
}
}
TreeNode root = new TreeNode(maxVal);
// 递归调用构造左右子树
root.left = constructMaximumBinaryTree(nums[0..index-1]);
root.right = constructMaximumBinaryTree(nums[index+1..nums.length-1]);
return root;
}
看懂了吗?对于每个根节点,只需要找到当前 nums 中的最大值和对应的索引,然后递归调用左右数组构造左右子树即可。
明确了思路,我们可以重新写一个辅助函数 build,来控制 nums 的索引:
// 主函数
TreeNode constructMaxBT(int[] nums) {
return build(nums, 0, nums.length - 1);
}
// 将 nums 构造成符合条件的树,返回根节点
TreeNode build(int[] nums, int lo, int hi) {
// base case
if (lo > hi)
return null;
// 找到数组中的最大值和对应的索引
int index = -1, maxVal = Integer.MIN_VALUE;
for (int i = lo; i <= hi; i++) {
if (maxVal < nums[i]) {
index = i;
maxVal = nums[i];
}
}
TreeNode root = new TreeNode(maxVal);
// 递归调用构造左右子树
root.left = build(nums, lo, index - 1);
root.right = build(nums, index + 1, hi);
return root;
}
至此,这道题就做完了,还是挺简单的对吧,下面看两道更困难的常见算法题:让你用前序/中序遍历结果还原二叉树,以及用后序/中序遍历结果还原二叉树。
通过前序和中序/后序和中序遍历结果构造二叉树
经典问题了,面试/笔试中常考,力扣第 105 题就是这个问题:
函数签名如下:
TreeNode buildTree(int[] preorder, int[] inorder);
废话不多说,直接来想思路,首先思考,根节点应该做什么。
类似上一题,我们肯定要想办法确定根节点的值,把根节点做出来,然后递归构造左右子树即可。
我们先来回顾一下,前序遍历和中序遍历的结果有什么特点?
void traverse(TreeNode root) {
// 前序遍历
preorder.add(root.val);
traverse(root.left);
traverse(root.right);
}
void traverse(TreeNode root) {
traverse(root.left);
// 中序遍历
inorder.add(root.val);
traverse(root.right);
}
这样的遍历顺序差异,导致了preorder和inorder数组中的元素分布有如下特点:
找到根节点是很简单的,前序遍历的第一个值preorder[0]就是根节点的值,关键在于如何通过根节点的值,将preorder和postorder数组划分成两半,构造根节点的左右子树?
换句话说,对于以下代码中的?部分应该填入什么:
/* 主函数 */
TreeNode buildTree(int[] preorder, int[] inorder) {
return build(preorder, 0, preorder.length - 1,
inorder, 0, inorder.length - 1);
}
/*
若前序遍历数组为 preorder[preStart..preEnd],
后续遍历数组为 postorder[postStart..postEnd],
构造二叉树,返回该二叉树的根节点
*/
TreeNode build(int[] preorder, int preStart, int preEnd,
int[] inorder, int inStart, int inEnd) {
// root 节点对应的值就是前序遍历数组的第一个元素
int rootVal = preorder[preStart];
// rootVal 在中序遍历数组中的索引
int index = 0;
for (int i = inStart; i <= inEnd; i++) {
if (inorder[i] == rootVal) {
index = i;
break;
}
}
TreeNode root = new TreeNode(rootVal);
// 递归构造左右子树
root.left = build(preorder, ?, ?,
inorder, ?, ?);
root.right = build(preorder, ?, ?,
inorder, ?, ?);
return root;
}
对于代码中的rootVal和index变量,就是下图这种情况:
现在我们来看图做填空题,下面这几个问号处应该填什么:
root.left = build(preorder, ?, ?,
inorder, ?, ?);
root.right = build(preorder, ?, ?,
inorder, ?, ?);
对于左右子树对应的inorder数组的起始索引和终止索引比较容易确定:
root.left = build(preorder, ?, ?,
inorder, inStart, index - 1);
root.right = build(preorder, ?, ?,
inorder, index + 1, inEnd);
对于preorder数组呢?如何确定左右数组对应的起始索引和终止索引?
这个可以通过左子树的节点数推导出来,假设左子树的节点数为leftSize,那么preorder数组上的索引情况是这样的:
看着这个图就可以把preorder对应的索引写进去了:
int leftSize = index - inStart;
root.left = build(preorder, preStart + 1, preStart + leftSize,
inorder, inStart, index - 1);
root.right = build(preorder, preStart + leftSize + 1, preEnd,
inorder, index + 1, inEnd);
至此,整个算法思路就完成了,我们再补一补 base case 即可写出解法代码:
TreeNode build(int[] preorder, int preStart, int preEnd,
int[] inorder, int inStart, int inEnd) {
if (preStart > preEnd) {
return null;
}
// root 节点对应的值就是前序遍历数组的第一个元素
int rootVal = preorder[preStart];
// rootVal 在中序遍历数组中的索引
int index = 0;
for (int i = inStart; i <= inEnd; i++) {
if (inorder[i] == rootVal) {
index = i;
break;
}
}
int leftSize = index - inStart;
// 先构造出当前根节点
TreeNode root = new TreeNode(rootVal);
// 递归构造左右子树
root.left = build(preorder, preStart + 1, preStart + leftSize,
inorder, inStart, index - 1);
root.right = build(preorder, preStart + leftSize + 1, preEnd,
inorder, index + 1, inEnd);
return root;
}
我们的主函数只要调用build函数即可,你看着函数这么多参数,解法这么多代码,似乎比我们上面讲的那道题难很多,让人望而生畏,实际上呢,这些参数无非就是控制数组起止位置的,画个图就能解决了。
通过后序和中序遍历结果构造二叉树
类似上一题,这次我们利用后序和中序遍历的结果数组来还原二叉树,这是力扣第 106 题:
函数签名如下:
TreeNode buildTree(int[] inorder, int[] postorder);
类似的,看下后序和中序遍历的特点:
void traverse(TreeNode root) {
traverse(root.left);
traverse(root.right);
// 前序遍历
postorder.add(root.val);
}
void traverse(TreeNode root) {
traverse(root.left);
// 中序遍历
inorder.add(root.val);
traverse(root.right);
}
这样的遍历顺序差异,导致了preorder和inorder数组中的元素分布有如下特点:
这道题和上一题的关键区别是,后序遍历和前序遍历相反,根节点对应的值为postorder的最后一个元素。
整体的算法框架和上一题非常类似,我们依然写一个辅助函数build:
TreeNode buildTree(int[] inorder, int[] postorder) {
return build(inorder, 0, inorder.length - 1,
postorder, 0, postorder.length - 1);
}
TreeNode build(int[] inorder, int inStart, int inEnd,
int[] postorder, int postStart, int postEnd) {
// root 节点对应的值就是后序遍历数组的最后一个元素
int rootVal = postorder[postEnd];
// rootVal 在中序遍历数组中的索引
int index = 0;
for (int i = inStart; i <= inEnd; i++) {
if (inorder[i] == rootVal) {
index = i;
break;
}
}
TreeNode root = new TreeNode(rootVal);
// 递归构造左右子树
root.left = build(preorder, ?, ?,
inorder, ?, ?);
root.right = build(preorder, ?, ?,
inorder, ?, ?);
return root;
}
现在postoder和inorder对应的状态如下:
我们可以按照上图将问号处的索引正确填入:
int leftSize = index - inStart;
root.left = build(inorder, inStart, index - 1,
postorder, postStart, postStart + leftSize - 1);
root.right = build(inorder, index + 1, inEnd,
postorder, postStart + leftSize, postEnd - 1);
综上,可以写出完整的解法代码:
TreeNode build(int[] inorder, int inStart, int inEnd,
int[] postorder, int postStart, int postEnd) {
if (inStart > inEnd) {
return null;
}
// root 节点对应的值就是后序遍历数组的最后一个元素
int rootVal = postorder[postEnd];
// rootVal 在中序遍历数组中的索引
int index = 0;
for (int i = inStart; i <= inEnd; i++) {
if (inorder[i] == rootVal) {
index = i;
break;
}
}
// 左子树的节点个数
int leftSize = index - inStart;
TreeNode root = new TreeNode(rootVal);
// 递归构造左右子树
root.left = build(inorder, inStart, index - 1,
postorder, postStart, postStart + leftSize - 1);
root.right = build(inorder, index + 1, inEnd,
postorder, postStart + leftSize, postEnd - 1);
return root;
}
有了前一题的铺垫,这道题很快就解决了,无非就是rootVal变成了最后一个元素,再改改递归函数的参数而已,只要明白二叉树的特性,也不难写出来。
最后呼应下前文,做二叉树的问题,关键是把题目的要求细化,搞清楚根节点应该做什么,然后剩下的事情抛给前/中/后序的遍历框架就行了。
现在你是否明白其中的玄妙了呢?